950 resultados para Spatial model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops an Internet geographical information system (GIS) and spatial model application that provides socio-economic information and exploratory spatial data analysis for local government authorities (LGAs) in Queensland, Australia. The application aims to improve the means by which large quantities of data may be analysed, manipulated and displayed in order to highlight trends and patterns as well as provide performance benchmarking that is readily understandable and easily accessible for decision-makers. Measures of attribute similarity and spatial proximity are combined in a clustering model with a spatial autocorrelation index for exploratory spatial data analysis to support the identification of spatial patterns of change. Analysis of socio-economic changes in Queensland is presented. The results demonstrate the usefulness and potential appeal of the Internet GIS applications as a tool to inform the process of regional analysis, planning and policy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper examines competition in a spatial model of two-candidate elections, where one candidate enjoys a quality advantage over the other candidate. The candidates care about winning and also have policy preferences. There is two-dimensional private information. Candidate ideal points as well as their tradeoffs between policy preferences and winning are private information. The distribution of this two-dimensional type is common knowledge. The location of the median voter's ideal point is uncertain, with a distribution that is commonly known by both candidates. Pure strategy equilibria always exist in this model. We characterize the effects of increased uncertainty about the median voter, the effect of candidate policy preferences, and the effects of changes in the distribution of private information. We prove that the distribution of candidate policies approaches the mixed equilibrium of Aragones and Palfrey (2002a), when both candidates' weights on policy preferences go to zero.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lutzomyia (Nyssomyia) whitmani s.l.is the main vector of cutaneous leishmaniasis in state of Mato Grosso, but little is known about environmental determinants of its spatial distribution on a regional scale. Entomologic surveys of this sand fly species, conducted between 1996 and 2001 in 41 state municipalities, were used to investigate the relationships between environmental factors and the presence of the species, and to develop a spatial model of habitat suitability. The relationship between averaged CDC light trap indexes and 15 environmental and socio-economic factors were tested by logistic regression (LR) analysis. Spatial layers of deforestation tax and the Brazilian index of gross net production (IGNP) were identified as significant explanatory variables for vector presence in the LR model, and these were then overlaid with habitat maps. The highest habitat suitability in 2001 was obtained for the heavily deforested areas in the Central-North, South, East, and Southwest of Mato Grosso, particularly in municipalities with lower IGNP values.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salmonella is the second most commonly reported human foodborne pathogen in England and Wales, and antimicrobial-resistant strains of Salmonella are an increasing problem in both human and veterinary medicine. In this work we used a generalized linear spatial model to estimate the spatial and temporal patterns of antimicrobial resistance in Salmonella Typhimurium in England and Wales. Of the antimicrobials considered we found a common peak in the probability that an S. Typhimurium incident will show resistance to a given antimicrobial in late spring and in mid to late autumn; however, for one of the antimicrobials (streptomycin) there was a sharp drop, over the last 18 months of the period of investigation, in the probability of resistance. We also found a higher probability of resistance in North Wales which is consistent across the antimicrobials considered. This information contributes to our understanding of the epidemiology of antimicrobial resistance in Salmonella.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Millions of unconscious calculations are made daily by pedestrians walking through the Colby College campus. I used ArcGIS to make a predictive spatial model that chose paths similar to those that are actually used by people on a regular basis. To make a viable model of how most travelers choose their way, I considered both the distance required and the type of traveling surface. I used an iterative process to develop a scheme for weighting travel costs which resulted in accurate least-cost paths to be predicted by ArcMap. The accuracy was confirmed when the calculated routes were compared to satellite photography and were found to overlap well-worn “shortcuts” taken between the paved paths throughout campus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, is presented. Using the topography, thickness and distribution of sediments is calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment scale models, in areas where the upper subsurface is relatively homogenous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass-transport and hydrological flow paths in the periglacial catchment through numerical modelling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper estimates the impact of industrial agglomeration on firm-level productivity in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation algorithm. A Bayesian instrumental-variables approach is used to address endogeneity bias of agglomeration. Robust to these potential biases, we find that agglomeration of the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration of urban population (i.e. urbanization) has no such effects. Additionally, the localization effects increase with educational levels of employees and the share of intermediate inputs in gross output. These results may suggest that agglomeration externalities occur through knowledge spillovers and input sharing among firms producing similar manufactures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Commerce in rural territories should not be considered as a needed service, but as a basic infrastructure, that impact not only existent population, but also tourism, and rural industrialization. So, the rural areas need not only agriculture but industry and services, to have a global and balanced development, including for the countryside and the population. In the work presented in this paper, we are considering the formulation of the direct relation between population and the endowment of commerce sites within a geographical territory, the ?area of commercial interactions?. These are the closer set of towns that can gravitate to each other to cover the required needs for the populations within the area. The products retailed, range from basic products for the daily lives, to all other products for industry, agriculture, and services. The econometric spatial model developed to evaluate the interactions and estimate the parameters, is based on the Spatial Error Model, which allows for other spatial hidden effects to be considered without direct interference to the commercial disposition. The data and territory used to test the model correspond to a rural area in the Spanish Palencia territory (NUTS-3 level). The parameters have dependence from population levels, local rent per head, local and regional government budgets, and particular spatial restrictions. Interesting results are emerging form the model. The more significant is that the spatial effects can replace some number of commerce sites in towns, given the right spatial distribution of the sites and the towns. This is equivalent to consider the area of commercial interactions as the unit of measurement for the basic infrastructure and not only the towns.