979 resultados para Spatial interpolation
Resumo:
This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study anti control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In coffee processing the fermentation stage is considered one of the critical operations by its impact on the final quality of the product. However, the level of control of the fermentation process on each farm is often not adequate; the use of sensorics for controlling coffee fermentation is not common. The objective of this work is to characterize the fermentation temperature in a fermentation tank by applying spatial interpolation and a new methodology of data analysis based on phase space diagrams of temperature data, collected by means of multi-distributed, low cost and autonomous wireless sensors. A real coffee fermentation was supervised in the Cauca region (Colombia) with a network of 24 semi-passive TurboTag RFID temperature loggers with vacuum plastic cover, submerged directly in the fermenting mass. Temporal evolution and spatial distribution of temperature is described in terms of the phase diagram areas which characterizes the cyclic behaviour of temperature and highlights the significant heterogeneity of thermal conditions at different locations in the tank where the average temperature of the fermentation was 21.2 °C, although there were temperature ranges of 4.6°C, and average spatial standard deviation of ±1.21ºC. In the upper part of the tank we found high heterogeneity of temperatures, the higher temperatures and therefore the higher fermentation rates. While at the bottom, it has been computed an area in the phase diagram practically half of the area occupied by the sensors of the upper tank, therefore this location showed higher temperature homogeneity
Resumo:
The fermentation stage is considered to be one of the critical steps in coffee processing due to its impact on the final quality of the product. The objective of this work is to characterise the temperature gradients in a fermentation tank by multi-distributed, low-cost and autonomous wireless sensors (23 semi-passive TurboTag® radio-frequency identifier (RFID) temperature loggers). Spatial interpolation in polar coordinates and an innovative methodology based on phase space diagrams are used. A real coffee fermentation process was supervised in the Cauca region (Colombia) with sensors submerged directly in the fermenting mass, leading to a 4.6 °C temperature range within the fermentation process. Spatial interpolation shows a maximum instant radial temperature gradient of 0.1 °C/cm from the centre to the perimeter of the tank and a vertical temperature gradient of 0.25 °C/cm for sensors with equal polar coordinates. The combination of spatial interpolation and phase space graphs consistently enables the identification of five local behaviours during fermentation (hot and cold spots).
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).
Resumo:
Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.
Resumo:
Vineyards vary over space and time, making geomatics technologies ideally suited to study terroir. This study applied geomatics technologies - GPS, remote sensing and GIS - to characterize the spatial variability at Stratus Vineyards in the Niagara Region. The concept of spatial terroir was used to visualize, monitor and analyze the spatial and temporal variability of variables that influence grape quality. Spatial interpolation and spatial autocorrelation were used to measure the pattern demonstrated by soil moisture, leaf water potential, vine vigour, soil composition and grape composition on two Cabernet Franc blocks and one Chardonnay block. All variables demonstrated some spatial variability within and between the vineyard block and over time. Soil moisture exhibited the most significant spatial clustering and was temporally stable. Geomatics technologies provided valuable spatial information related to the natural spatial variability at Stratus Vineyards and can be used to inform and influence vineyard management decisions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We have developed a statistical gap-filling method adapted to the specific coverage and properties of observed fugacity of surface ocean CO2 (fCO2). We have used this method to interpolate the Surface Ocean CO2 Atlas (SOCAT) v2 database on a 2.5°×2.5° global grid (south of 70°N) for 1985-2011 at monthly resolution. The method combines a spatial interpolation based on a 'radius of influence' to determine nearby similar fCO2 values with temporal harmonic and cubic spline curve-fitting, and also fits long term trends and seasonal cycles. Interannual variability is established using deviations of observations from the fitted trends and seasonal cycles. An uncertainty is computed for all interpolated values based on the spatial and temporal range of the interpolation. Tests of the method using model data show that it performs as well as or better than previous regional interpolation methods, but in addition it provides a near-global and interannual coverage.
Resumo:
Interpolated data are an important part of the environmental information exchange as many variables can only be measured at situate discrete sampling locations. Spatial interpolation is a complex operation that has traditionally required expert treatment, making automation a serious challenge. This paper presents a few lessons learnt from INTAMAP, a project that is developing an interoperable web processing service (WPS) for the automatic interpolation of environmental data using advanced geostatistics, adopting a Service Oriented Architecture (SOA). The “rainbow box” approach we followed provides access to the functionality at a whole range of different levels. We show here how the integration of open standards, open source and powerful statistical processing capabilities allows us to automate a complex process while offering users a level of access and control that best suits their requirements. This facilitates benchmarking exercises as well as the regular reporting of environmental information without requiring remote users to have specialized skills in geostatistics.