993 resultados para Spatial Weights Matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions. Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper presented at Geo-Spatial Crossroad GI_Forum, Salzburg, Austria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until recently, much effort has been devoted to the estimation of panel data regression models without adequate attention being paid to the drivers of diffusion and interaction across cross section and spatial units. We discuss some new methodologies in this emerging area and demonstrate their use in measurement and inferences on cross section and spatial interactions. Specifically, we highlight the important distinction between spatial dependence driven by unobserved common factors and those based on a spatial weights matrix. We argue that, purely factor driven models of spatial dependence may be somewhat inadequate because of their connection with the exchangeability assumption. Limitations and potential enhancements of the existing methods are discussed, and several directions for new research are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El mecanismo de fijación del precio de oferta en el mercado eléctrico colombiano exhibe comportamientos estratégicos inherente a la estructura oligopólica de este mercado, no solo por su alto porcentaje hidrológico, aproximadamente 80%, sino también debido a la localización geográfica de las plantas de generación eléctrica cercanas a la Región Andina. En esta investigación se diseña una matriz de pesos espaciales, que recoge características de la localización geográfica de las plantas de generación eléctrica, la cual se incorpora en un panel espacial de tipo Durbin para identificar dichos comportamientos de la geografía económica, además de las variables fundamentales que explican la formación del precio en este mercado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that any invariant test for spatial autocorrelation in a spatial error or spatial lag model with equal weights matrix has power equal to size. This result holds under the assumption of an elliptical distribution. Under Gaussianity, we also show that any test whose power is larger than its size for at least one point in the parameter space must be biased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that for any sample size, any size of the test, and any weights matrix outside a small class of exceptions, there exists a positive measure set of regression spaces such that the power of the Cli-Ord test vanishes as the autocorrelation increases in a spatial error model. This result extends to the tests that dene the Gaussian power envelope of all invariant tests for residual spatial autocorrelation. In most cases, the regression spaces such that the problem occurs depend on the size of the test, but there also exist regression spaces such that the power vanishes regardless of the size. A characterization of such particularly hostile regression spaces is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates how the correlations implied by a first-order simultaneous autoregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation parameter. A graph theoretic representation of the covariances in terms of walks connecting the spatial units helps to clarify a number of correlation properties of the processes. In particular, we study some implications of row-standardizing the weights matrix, the dependence of the correlations on graph distance, and the behavior of the correlations at the extremes of the parameter space. Throughout the analysis differences between directed and undirected networks are emphasized. The graph theoretic representation also clarifies why it is difficult to relate properties ofW to correlation properties of SAR(1) models defined on irregular lattices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper considers the estimation of the geographical scope of industrial location determinants. While previous studies impose strong assumptions on the weighting scheme of the spatial neighbour matrix, we propose a exible parametrisation that allows for di fferent (distance-based) de finitions of neighbourhood and di fferent weights to the neighbours. In particular, we estimate how far can reach indirect marginal e ffects and discuss how to report them. We also show that the use of smooth transition functions provides tools for policy analysis that are not available in the traditional threshold modelling. Keywords: count data models, industrial location, smooth transition functions, threshold models. JEL-Codes: C25, C52, R11, R30.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An approach to incorporate spatial dependence into stochastic frontier analysis is developed and applied to a sample of 215 dairy farms in England and Wales. A number of alternative specifications for the spatial weight matrix are used to analyse the effect of these on the estimation of spatial dependence. Estimation is conducted using a Bayesian approach and results indicate that spatial dependence is present when explaining technical inefficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta dissertação concentra-se nos processos estocásticos espaciais definidos em um reticulado, os chamados modelos do tipo Cliff & Ord. Minha contribuição nesta tese consiste em utilizar aproximações de Edgeworth e saddlepoint para investigar as propriedades em amostras finitas do teste para detectar a presença de dependência espacial em modelos SAR (autoregressivo espacial), e propor uma nova classe de modelos econométricos espaciais na qual os parâmetros que afetam a estrutura da média são distintos dos parâmetros presentes na estrutura da variância do processo. Isto permite uma interpretação mais clara dos parâmetros do modelo, além de generalizar uma proposta de taxonomia feita por Anselin (2003). Eu proponho um estimador para os parâmetros do modelo e derivo a distribuição assintótica do estimador. O modelo sugerido na dissertação fornece uma interpretação interessante ao modelo SARAR, bastante comum na literatura. A investigação das propriedades em amostras finitas dos testes expande com relação a literatura permitindo que a matriz de vizinhança do processo espacial seja uma função não-linear do parâmetro de dependência espacial. A utilização de aproximações ao invés de simulações (mais comum na literatura), permite uma maneira fácil de comparar as propriedades dos testes com diferentes matrizes de vizinhança e corrigir o tamanho ao comparar a potência dos testes. Eu obtenho teste invariante ótimo que é também localmente uniformemente mais potente (LUMPI). Construo o envelope de potência para o teste LUMPI e mostro que ele é virtualmente UMP, pois a potência do teste está muito próxima ao envelope (considerando as estruturas espaciais definidas na dissertação). Eu sugiro um procedimento prático para construir um teste que tem boa potência em uma gama de situações onde talvez o teste LUMPI não tenha boas propriedades. Eu concluo que a potência do teste aumenta com o tamanho da amostra e com o parâmetro de dependência espacial (o que está de acordo com a literatura). Entretanto, disputo a visão consensual que a potência do teste diminui a medida que a matriz de vizinhança fica mais densa. Isto reflete um erro de medida comum na literatura, pois a distância estatística entre a hipótese nula e a alternativa varia muito com a estrutura da matriz. Fazendo a correção, concluo que a potência do teste aumenta com a distância da alternativa à nula, como esperado.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O fim do ano de 2014 marcou o segundo aniversário da Resolução 13/2012 (R13) do Senado brasileiro. Grosso modo, R13 constituiu-se de um normativo do Senado cujo objetivo era o de por um fim na Guerra Fiscal dos Portos (FWP), uma competição fiscal entre os estados que se dá através da concessão de benefícios fiscais sobre operações interestaduais com mercadorias importadas de modo a atrair empresas importadoras para o território do estado concedente. R13 diminuiu o nível da tributação sobre tais operações, esperando com isso diminuir os lucros auferidos e a propensão das firmas de aceitarem tais regimes especiais de incentivação fiscal. Nada obstante, R13 gerou uma grande discussão sobre se os benefícios da atração de investimentos para um estado em particular superariam ou não os custos que esse estado incorreria em renunciar receitas tributárias em razão concessão desses benefícios fiscais. O objetivo do presente trabalho é o de dar uma contribuição a essa discussão, testando se um comportamento de interação estratégica entre estados, tal como aquele que supostamente ocorre no contexto da FWP, de fato emerge dos dados de importação coletados de janeiro de 2010 a maio de 2015, e, também, testando se a R13 de fato afetou tal comportamento de interação estratégica. Utiliza-se aqui um modelo de econometria espacial, no qual se especifica uma matriz de pesos que agrega o nível de importação das jurisdições concorrentes, organizando os dados em um painel de efeitos fixos. Os resultados sugerem que existe um comportamento de interação estratégica entre os estados e que a R13 de fato impactou tal comportamento.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.