801 resultados para Spatial Decision Support System
Resumo:
Background: Bhutan has reduced its malaria incidence significantly in the last 5 years, and is aiming for malaria elimination by 2016. To assist with the management of the Bhutanese malaria elimination programme a spatial decision support system (SDSS) was developed. The current study aims to describe SDSS development and evaluate SDSS utility and acceptability through informant interviews. Methods: The SDSS was developed based on the open-source Quantum geographical information system (QGIS) and piloted to support the distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in the two sub-districts of Samdrup Jongkhar District. It was subsequently used to support reactive case detection (RACD) in the two sub-districts of Samdrup Jongkhar and two additional sub-districts in Sarpang District. Interviews were conducted to ascertain perceptions on utility and acceptability of 11 informants using the SDSS, including programme and district managers, and field workers. Results: A total of 1502 households with a population of 7165 were enumerated in the four sub-districts, and a total of 3491 LLINs were distributed with one LLIN per 1.7 persons. A total of 279 households representing 728 residents were involved with RACD. Informants considered that the SDSS was an improvement on previous methods for organizing LLIN distribution, IRS and RACD, and could be easily integrated into routine malaria and other vector-borne disease surveillance systems. Informants identified some challenges at the programme and field level, including the need for more skilled personnel to manage the SDSS, and more training to improve the effectiveness of SDSS implementation and use of hardware. Conclusions: The SDSS was well accepted and informants expected its use to be extended to other malaria reporting districts and other vector-borne diseases. Challenges associated with efficient SDSS use included adequate skills and knowledge, access to training and support, and availability of hardware including computers and global positioning system receivers.
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
This study describes the design and implementation of DSS for assessment of Mini, Micro and Small Schemes. The design links a set of modelling, manipulation, spatial analyses and display tools to a structured database that has the facility to store both observed and simulated data. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in less time and can be used by decision-making bodies to assess the impacts of various scenarios (e.g.: changes in land use pattern) and to review, cost and benefits of decisions to be made. It also offers means of entering, accessing and interpreting the information for the purpose of sound decision making. Thus, the overall objective of this DSS is the development of set of tools aimed at transforming data into information and aid decisions at different scales.
Resumo:
Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.
Resumo:
Accurate data of the natural conditions and agricultural systems with a good spatial resolution are a key factor to tackle food insecurity in developing countries. A broad variety of approaches exists to achieve precise data and information about agriculture. One system, especially developed for smallholder agriculture in East Africa, is the Farm Management Handbook of Kenya. It was first published in 1982/83 and fully revised in 2012, now containing 7 volumes. The handbooks contain detailed information on climate, soils, suitable crops and soil care based on scientific research results of the last 30 years. The density of facts leads to time consuming extraction of all necessary information. In this study we analyse the user needs and necessary components of a system for decision support for smallholder farming in Kenya based on a geographical information system (GIS). Required data sources were identified, as well as essential functions of the system. We analysed the results of our survey conducted in 2012 and early 2013 among agricultural officers. The monitoring of user needs and the problem of non-adaptability of an agricultural information system on the level of extension officers in Kenya are the central objectives. The outcomes of the survey suggest the establishment of a decision support tool based on already available open source GIS components. The system should include functionalities to show general information for a specific location and should provide precise recommendations about suitable crops and management options to support agricultural guidance on farm level.
Resumo:
With the application of GIS methodologies to spatial data, researchers can now identify patterns of occurrence for many social problems including health-issues and crime. Further more, since this type of data also contains clues as to the underlying causes of social problems, it can be used to make well-educated and consequently, more effective policy decisions.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systems-based decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
The field of collaborative health planning faces significant challenges due to the lack of effective information, systems and the absence of a framework to make informed decisions. These challenges have been magnified by the rise of the healthy cities movement, consequently, there have been more frequent calls for localised, collaborative and evidence-driven decision-making. Some studies in the past have reported that the use of decision support systems (DSS) for planning healthy cities may lead to: increase collaboration between stakeholders and the general public, improve the accuracy and quality of the decision-making processes and improve the availability of data and information for health decision-makers. These links have not yet been fully tested and only a handful of studies have evaluated the impact of DSS on stakeholders, policy-makers and health planners. This study suggests a framework for developing healthy cities and introduces an online Geographic Information Systems (GIS)-based DSS for improving the collaborative health planning. It also presents preliminary findings of an ongoing case study conducted in the Logan-Beaudesert region of Queensland, Australia. These findings highlight the perceptions of decision-making prior to the implementation of the DSS intervention. Further, the findings help us to understand the potential role of the DSS to improve collaborative health planning practice.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Fully structured and matured open source spatial and temporal analysis technology seems to be the official carrier of the future for planning of the natural resources especially in the developing nations. This technology has gained enormous momentum because of technical superiority, affordability and ability to join expertise from all sections of the society. Sustainable development of a region depends on the integrated planning approaches adopted in decision making which requires timely and accurate spatial data. With the increased developmental programmes, the need for appropriate decision support system has increased in order to analyse and visualise the decisions associated with spatial and temporal aspects of natural resources. In this regard Geographic Information System (GIS) along with remote sensing data support the applications that involve spatial and temporal analysis on digital thematic maps and the remotely sensed images. Open source GIS would help in wide scale applications involving decisions at various hierarchical levels (for example from village panchayat to planning commission) on economic viability, social acceptance apart from technical feasibility. GRASS (Geographic Resources Analysis Support System, http://wgbis.ces.iisc.ernet.in/grass) is an open source GIS that works on Linux platform (freeware), but most of the applications are in command line argument, necessitating a user friendly and cost effective graphical user interface (GUI). Keeping these aspects in mind, Geographic Resources Decision Support System (GRDSS) has been developed with functionality such as raster, topological vector, image processing, statistical analysis, geographical analysis, graphics production, etc. This operates through a GUI developed in Tcltk (Tool command language / Tool kit) under Linux as well as with a shell in X-Windows. GRDSS include options such as Import /Export of different data formats, Display, Digital Image processing, Map editing, Raster Analysis, Vector Analysis, Point Analysis, Spatial Query, which are required for regional planning such as watershed Analysis, Landscape Analysis etc. This is customised to Indian context with an option to extract individual band from the IRS (Indian Remote Sensing Satellites) data, which is in BIL (Band Interleaved by Lines) format. The integration of PostgreSQL (a freeware) in GRDSS aids as an efficient database management system.