895 resultados para Sparse sensing
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Many problems in digital communications involve wideband radio signals. As the most recent example, the impressive advances in Cognitive Radio systems make even more necessary the development of sampling schemes for wideband radio signals with spectral holes. This is equivalent to considering a sparse multiband signal in the framework of Compressive Sampling theory. Starting from previous results on multicoset sampling and recent advances in compressive sampling, we analyze the matrix involved in the corresponding reconstruction equation and define a new method for the design of universal multicoset codes, that is, codes guaranteeing perfect reconstruction of the sparse multiband signal.
Resumo:
Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.
Resumo:
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
Resumo:
Diffusion MRI is a well established imaging modality providing a powerful way to probe the structure of the white matter non-invasively. Despite its potential, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a large variety of methods have been recently proposed to shorten the acquisition times. Among them, spherical deconvolution approaches have gained a lot of interest for their ability to reliably recover the intra-voxel fiber configuration with a relatively small number of data samples. To overcome the intrinsic instabilities of deconvolution, these methods use regularization schemes generally based on the assumption that the fiber orientation distribution (FOD) to be recovered in each voxel is sparse. The well known Constrained Spherical Deconvolution (CSD) approach resorts to Tikhonov regularization, based on an ℓ(2)-norm prior, which promotes a weak version of sparsity. Also, in the last few years compressed sensing has been advocated to further accelerate the acquisitions and ℓ(1)-norm minimization is generally employed as a means to promote sparsity in the recovered FODs. In this paper, we provide evidence that the use of an ℓ(1)-norm prior to regularize this class of problems is somewhat inconsistent with the fact that the fiber compartments all sum up to unity. To overcome this ℓ(1) inconsistency while simultaneously exploiting sparsity more optimally than through an ℓ(2) prior, we reformulate the reconstruction problem as a constrained formulation between a data term and a sparsity prior consisting in an explicit bound on the ℓ(0)norm of the FOD, i.e. on the number of fibers. The method has been tested both on synthetic and real data. Experimental results show that the proposed ℓ(0) formulation significantly reduces modeling errors compared to the state-of-the-art ℓ(2) and ℓ(1) regularization approaches.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.
Resumo:
Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.
Resumo:
The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.
Resumo:
Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.
Resumo:
Spectrum sensing is currently one of the most challenging design problems in cognitive radio. A robust spectrum sensing technique is important in allowing implementation of a practical dynamic spectrum access in noisy and interference uncertain environments. In addition, it is desired to minimize the sensing time, while meeting the stringent cognitive radio application requirements. To cope with this challenge, cyclic spectrum sensing techniques have been proposed. However, such techniques require very high sampling rates in the wideband regime and thus are costly in hardware implementation and power consumption. In this thesis the concept of compressed sensing is applied to circumvent this problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is used to reduce the sampling rate and a recovery method is developed for re- constructing the sparse cyclic spectrum from the compressed samples. The reconstruction solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-main which is different from conventional compressed sensing techniques for vector-form sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate samples for simultaneous detection of multiple signal sources. After the cyclic spectrum recovery two methods are proposed to make spectral occupancy decisions from the recovered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation schemes, and a fast and simple thresholding method that works for Binary Phase Shift Keying (BPSK) signals only. In addition a method for recovering the power spectrum of stationary signals is developed as a special case. Simulation results demonstrate that the proposed spectrum sensing algorithms can significantly reduce sampling rate without sacrifcing performance. The robustness of the algorithms to the noise uncertainty of the wireless channel is also shown.
Resumo:
In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.
Resumo:
It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992–1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.
Resumo:
This thesis demonstrates a new way to achieve sparse biological sample detection, which uses magnetic bead manipulation on a digital microfluidic device. Sparse sample detection was made possible through two steps: sparse sample capture and fluorescent signal detection. For the first step, the immunological reaction between antibody and antigen enables the binding between target cells and antibody-‐‑ coated magnetic beads, hence achieving sample capture. For the second step, fluorescent detection is achieved via fluorescent signal measurement and magnetic bead manipulation. In those two steps, a total of three functions need to work together, namely magnetic beads manipulation, fluorescent signal measurement and immunological binding. The first function is magnetic bead manipulation, and it uses the structure of current-‐‑carrying wires embedded in the actuation electrode of an electrowetting-‐‑on-‐‑dielectric (EWD) device. The current wire structure serves as a microelectromagnet, which is capable of segregating and separating magnetic beads. The device can achieve high segregation efficiency when the wire spacing is 50µμm, and it is also capable of separating two kinds of magnetic beads within a 65µμm distance. The device ensures that the magnetic bead manipulation and the EWD function can be operated simultaneously without introducing additional steps in the fabrication process. Half circle shaped current wires were designed in later devices to concentrate magnetic beads in order to increase the SNR of sample detection. The second function is immunological binding. Immunological reaction kits were selected in order to ensure the compatibility of target cells, magnetic bead function and EWD function. The magnetic bead choice ensures the binding efficiency and survivability of target cells. The magnetic bead selection and binding mechanism used in this work can be applied to a wide variety of samples with a simple switch of the type of antibody. The last function is fluorescent measurement. Fluorescent measurement of sparse samples is made possible of using fluorescent stains and a method to increase SNR. The improved SNR is achieved by target cell concentration and reduced sensing area. Theoretical limitations of the entire sparse sample detection system is as low as 1 Colony Forming Unit/mL (CFU/mL).
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.