50 resultados para Spalling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of a repair work for the restoration of spalled reinforced concrete (r.c.) structures depends to a great extent, on their ability to restore the structural integrity of the r.c. element, to restore its serviceability and to protect the reinforcements from further deterioration. This paper presents results of a study concocted to investigate the structural performance of eight spalled r.c. beams repaired using two advanced repair materials in various zones for comparison purposes, namely a free flowing self compacting mortar (FFSCM) and a polymer Modified cementitious mortar (PMCM). The repair technique adopted was that for the repair of spalled concrete in which the bond between the concrete and steel was completely lost due to reinforcement corrosion or the effect of fire or impact. The beams used for the experiment were first cast, then hacked at various zones before they were repaired except for the control beam. The beam specimens were then loaded to failure under four point loadings. The structural response of each beam was evaluated in terms of first crack load, cracking behavior, crack pattern, deflection, variation of strains in the concrete and steel, collapse load and the modes of failure. The results of the test showed that, the repair materials applied on the various zones of the beams were able to restore more than 100% of the beams’ capacity and that FFSCM gave a better overall performance.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active vibration control (AVC) is a relatively new technology for the mitigation of annoying human-induced vibrations in floors. However, recent technological developments have demonstrated its great potential application in this field. Despite this, when a floor is found to have problematic floor vibrations after construction the unfamiliar technology of AVC is usually avoided in favour of more common techniques, such as Tuned Mass Dampers (TMDs) which have a proven track record of successful application, particularly for footbridges and staircases. This study aims to investigate the advantages and disadvantages that AVC has, when compared with TMDs, for the application of mitigation of pedestrian-induced floor vibrations in offices. Simulations are performed using the results from a finite element model of a typical office layout that has a high vibration response level. The vibration problems on this floor are then alleviated through the use of both AVC and TMDs and the results of each mitigation configuration compared. The results of this study will enable a more informed decision to be made by building owners and structural engineers regarding suitable technologies for reducing floor vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current procedures in post-earthquake safety and structural assessment are performed manually by a skilled triage team of structural engineers/certified inspectors. These procedures, and particularly the physical measurement of the damage properties, are time-consuming and qualitative in nature. This paper proposes a novel method that automatically detects spalled regions on the surface of reinforced concrete columns and measures their properties in image data. Spalling has been accepted as an important indicator of significant damage to structural elements during an earthquake. According to this method, the region of spalling is first isolated by way of a local entropy-based thresholding algorithm. Following this, the exposure of longitudinal reinforcement (depth of spalling into the column) and length of spalling along the column are measured using a novel global adaptive thresholding algorithm in conjunction with image processing methods in template matching and morphological operations. The method was tested on a database of damaged RC column images collected after the 2010 Haiti earthquake, and comparison of the results with manual measurements indicate the validity of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O estudo dos mecanismos de fadiga por contato tem grande relevância para o estudo dos componentes mecânicos que estão sujeitos ao desgaste. O desgaste é um tipo de falha que ocorre na maioria dos componentes que trabalham em contato. Atualmente para prever o desgaste são utilizados métodos experimentais que permitem ajustar curvas semi-empíricas, ou seja, o resultado depende de vários testes que além de caros são demorados. Com o aumento da competitividade na indústria, o tempo se tornou artigo de luxo e com isso o aprimoramento dos modelos de cálculo e das simulações numéricas são muito bem justificados. O estudo aprofundado do mecanismo de fratura por contato sem dúvida pode dar subsídios para um melhor projeto do componente mecânico e assim conseguir predizer com maior precisão quando a falha por desgaste ocorrerá e assim evitar falhas catastróficas e paradas de máquinas não programadas gerando grandes prejuízos e também risco de vidas humanas Este estudo apresenta um modelo numérico utilizando o método dos elementos finitos computacional para a simulação do spalling em componentes mecânicos sujeitos à fadiga de contato. O modelo foi simplificado para duas dimensões e foi considerado estado plano de deformações. Este estudo apresenta uma aproximação na aplicação dos conceitos da Mecânica da Fratura para estimar a vida de componentes mecânicos. O resultado do modelo numérico é confrontado qualitativamente com resultados práticos. A geometria dos pits assim como as relações entre o Fator de intensidade de tensões e o tamanho da trinca é apresentado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article research into the uniaxial tensile strength of Al2O3 monolithic ceramic is presented. The experimental procedure of the spalling of long bars is investigated from different approaches. This method is used to obtain the tensile strength at high strain rates under uniaxial conditions. Different methodologies proposed by several authors are used to obtain the tensile strength. The hypotheses needed for the experimental set-up are also checked, and the requirements of the set-up and the variables are also studied by means of numerical simulations. The research shows that the shape of the projectile is crucial to achieve successfully tests results. An experimental campaign has been carried out including high speed video and a digital image correlation system to obtain the tensile strength of alumina. Finally, a comparison of the test results provided by three different methods proposed by different authors is presented. The tensile strength obtained from the three such methods on the same specimens provides contrasting results. Mean values vary from one method to another but the trends are similar for two of the methods. The third method gives less scatter, though the mean values obtained are lower and do not follow the same trend as the other methods for the different specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente trabajo se presenta un estudio teórico y experimental de la determinación de la resistencia a tracción de materiales frágiles a partir de la técnica experimental de spalling. Se utilizan diferentes metodologías propuestas por varios autores para determinar la resistencia a tracción por spalling y se lleva a cabo un estudio mediante simulaciones numéricas de las diversas variables que influyen en este tipo de ensayos. Además, se realiza una campaña experimental de ensayos a una alúmina del 99,5% de pureza cuyos resultados son utilizados para la determinación de la resistencia a tracción de este material a partir de tres métodos diferentes propuestos por varios autores. Se expone el estudio y comparación de los resultados experimentales obtenidos de resistencia a tracción de la alúmina empleando técnicas de fotografía a alta velocidad y un sistema de correlación digital de imágenes. Los resultados muestran que la resistencia a tracción obtenida difiere en función de las diferentes metodologías propuestas.A theoretical and experimental study of the tensile strength of brittle materials using the experimental procedure of spalling of long bars is presented in this article. Different methodologies proposed by several authors are used to obtain the tensile strength of Al2O3 monolithic ceramic. The hypotheses needed for the experimental set-up are also checked, and the requirements of the set-up and the variables are also studied by means of numerical simulations. An experimental campaign has been carried out including high speed video and a digital image correlation system to obtain the tensile strength of alumina. Finally, a comparison of the test results provided by three different methods proposed by different authors are presented. The tensile strength obtained from three different methods on the same specimens provides different results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of spalling is a major factor in determining the fire resistance of concrete constructions. The apparently random occurrence of spalling has limited the development and application of fire resistance modelling for concrete structures. This Thesis describes an experimental investigation into the spalling of concrete on exposure to elevated temperatures. It has been shown that spalling may be categorised into four distinct types, aggregate spalling, corner spalling, surface spalling and explosive spalling. Aggregate spalling has been found to be a form of shear failure of aggregates local to the heated surface. The susceptibility of any particular concrete to aggregate spalling can be quantified from parameters which include the coefficients of thermal expansion of both the aggregate and the surrounding mortar, the size and thermal diffusivity of the aggregate and the rate of heating. Corner spalling, which is particularly significant for the fire resistance of concrete columns, is a result of concrete losing its tensile strength at elevated temperatures. Surface spalling is the result of excessive pore pressures within heated concrete. An empirical model has been developed to allow quantification of the pore pressures and a material failure model proposed. The dominant parameters are rate of heating, pore saturation and concrete permeability. Surface spalling may be alleviated by limiting pore pressure development and a number of methods to this end have been evaluated. Explosive spalling involves the catastrophic failure of a concrete element and may be caused by either of two distinct mechanisms. In the first instance, excessive pore pressures can cause explosive spalling, although the effect is limited principally to unloaded or relatively small specimens. A second cause of explosive spalling is where the superimposition of thermally induced stresses on applied load stresses exceed the concrete's strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A self-assembled monolayer of octadecyltrichlorosilane (OTS) was prepared on a single-crystal silicon wafer (111) and its tribological properties were examined with a one-way reciprocating tribometer. The worn surfaces and transfer film on the counterface were analyzed by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that, due to the wear of the OTS monolayer and the formation of the transfer film on the counterpart ball, the friction coefficient gradually increases from 0.06 to 0.13 with increasing sliding cycles and then keeps stable at a normal load of 0.5N. The transfer film is characterized by deposition, accumulation, and spalling at extended test duration. Though low friction coefficients of the monolayer in sliding against steel or ceramic counterfaces are recorded, poor load-carrying capacity and antiwear ability are also shown. Moreover, the monolayer itself or the corresponding transfer film on the counterface fails to lubricate even at a normal load of 1.0 N. Thus, the self-assembled monolayer of octadecyltrichlorosilane can be a potential boundary lubricant only at very low loads.