1000 resultados para Spacetime structure


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some properties of the Clifford algebras Cl-3,Cl-0, Cl-1,Cl-3, Cl-4,Cl-1 similar or equal to C circle times Cl-1,Cl-3 and Cl-2,Cl-4 are presented, and three isomorphisms between the Dirac-Clifford algebra C circle times Cl-1,Cl-3 and Cl-4,Cl-1 are exhibited, in order to construct conformal maps and twistors, using the paravector model of spacetime. The isomorphism between the twistor space inner product isometry group SU( 2,2) and the group $pin(+)(2,4) is also investigated, in the light of a suitable isomorphism between C circle times Cl-1,Cl-3 and Cl-4,Cl-1. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of $ pin(+)(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the Lorentzian R-4,(1) spacetime.We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra C circle times Cl-1,Cl-3 using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose, the Clifford algebra over R-4,R-1 is also used to describe conformal maps, instead of R-2,(4). Our formalism sheds some new light on the use of the paravector model and generalizations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cévennes–Vivarais Mediterranean Hydrometeorological Observatory (OHM-CV) is a research initiative aimed at improving the understanding and modeling of the Mediterranean intense rain events that frequently result in devastating flash floods in southern France. A primary objective is to bring together the skills of meteorologists and hydrologists, modelers and instrumentalists, researchers and practitioners, to cope with these rather unpredictable events. In line with previously published flash-flood monographs, the present paper aims at documenting the 8–9 September 2002 catastrophic event, which resulted in 24 casualties and an economic damage evaluated at 1.2 billion euros (i.e., about 1 billion U.S. dollars) in the Gard region, France. A description of the synoptic meteorological situation is first given and shows that no particular precursor indicated the imminence of such an extreme event. Then, radar and rain gauge analyses are used to assess the magnitude of the rain event, which was particularly remarkable for its spatial extent with rain amounts greater than 200 mm in 24 h over 5500 km2. The maximum values of 600–700 mm observed locally are among the highest daily records in the region. The preliminary results of the postevent hydrological investigation show that the hydrologic response of the upstream watersheds of the Gard and Vidourle Rivers is consistent with the marked space–time structure of the rain event. It is noteworthy that peak specific discharges were very high over most of the affected areas (5–10 m3 s−1 km−2) and reached locally extraordinary values of more than 20 m3 s−1 km−2. A preliminary analysis indicates contrasting hydrological behaviors that seem to be related to geomorphological factors, notably the influence of karst in part of the region. An overview of the ongoing meteorological and hydrological research projects devoted to this case study within the OHM-CV is finally presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Until recently the debate on the ontology of spacetime had only a philosophical significance, since, from a physical point of view, General Relativity has been made "immune" to the consequences of the "Hole Argument" simply by reducing the subject to the assertion that solutions of Einstein equations which are mathematically different and related by an active diffeomorfism are physically equivalent. From a technical point of view, the natural reading of the consequences of the "Hole Argument” has always been to go further and say that the mathematical representation of spacetime in General Relativity inevitably contains a “superfluous structure” brought to light by the gauge freedom of the theory. This position of apparent split between the philosophical outcome and the physical one has been corrected thanks to a meticulous and complicated formal analysis of the theory in a fundamental and recent (2006) work by Luca Lusanna and Massimo Pauri entitled “Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the Hole Argument and physical individuation of point-events”. The main result of this article is that of having shown how, from a physical point of view, point-events of Einstein empty spacetime, in a particular class of models considered by them, are literally identifiable with the autonomous degrees of freedom of the gravitational field (the Dirac observables, DO). In the light of philosophical considerations based on realism assumptions of the theories and entities, the two authors then conclude by saying that spacetime point-events have a degree of "weak objectivity", since they, depending on a NIF (non-inertial frame), unlike the points of the homogeneous newtonian space, are plunged in a rich and complex non-local holistic structure provided by the “ontic part” of the metric field. Therefore according to the complex structure of spacetime that General Relativity highlights and within the declared limits of a methodology based on a Galilean scientific representation, we can certainly assert that spacetime has got "elements of reality", but the inevitably relational elements that are in the physical detection of point-events in the vacuum of matter (highlighted by the “ontic part” of the metric field, the DO) are closely dependent on the choice of the global spatiotemporal laboratory where the dynamics is expressed (NIF). According to the two authors, a peculiar kind of structuralism takes shape: the point structuralism, with common features both of the absolutist and substantival tradition and of the relationalist one. The intention of this thesis is that of proposing a method of approaching the problem that is, at least at the beginning, independent from the previous ones, that is to propose an approach based on the possibility of describing the gravitational field at three distinct levels. In other words, keeping the results achieved by the work of Lusanna and Pauri in mind and following their underlying philosophical assumptions, we intend to partially converge to their structuralist approach, but starting from what we believe is the "foundational peculiarity" of General Relativity, which is that characteristic inherent in the elements that constitute its formal structure: its essentially geometric nature as a theory considered regardless of the empirical necessity of the measure theory. Observing the theory of General Relativity from this perspective, we can find a "triple modality" for describing the gravitational field that is essentially based on a geometric interpretation of the spacetime structure. The gravitational field is now "visible" no longer in terms of its autonomous degrees of freedom (the DO), which, in fact, do not have a tensorial and, therefore, nor geometric nature, but it is analyzable through three levels: a first one, called the potential level (which the theory identifies with the components of the metric tensor), a second one, known as the connections level (which in the theory determine the forces acting on the mass and, as such, offer a level of description related to the one that the newtonian gravitation provides in terms of components of the gravitational field) and, finally, a third level, that of the Riemann tensor, which is peculiar to General Relativity only. Focusing from the beginning on what is called the "third level" seems to present immediately a first advantage: to lead directly to a description of spacetime properties in terms of gauge-invariant quantites, which allows to "short circuit" the long path that, in the treatises analyzed, leads to identify the "ontic part” of the metric field. It is then shown how to this last level it is possible to establish a “primitive level of objectivity” of spacetime in terms of the effects that matter exercises in extended domains of spacetime geometrical structure; these effects are described by invariants of the Riemann tensor, in particular of its irreducible part: the Weyl tensor. The convergence towards the affirmation by Lusanna and Pauri that the existence of a holistic, non-local and relational structure from which the properties quantitatively identified of point-events depend (in addition to their own intrinsic detection), even if it is obtained from different considerations, is realized, in our opinion, in the assignment of a crucial role to the degree of curvature of spacetime that is defined by the Weyl tensor even in the case of empty spacetimes (as in the analysis conducted by Lusanna and Pauri). In the end, matter, regarded as the physical counterpart of spacetime curvature, whose expression is the Weyl tensor, changes the value of this tensor even in spacetimes without matter. In this way, going back to the approach of Lusanna and Pauri, it affects the DOs evolution and, consequently, the physical identification of point-events (as our authors claim). In conclusion, we think that it is possible to see the holistic, relational, and non-local structure of spacetime also through the "behavior" of the Weyl tensor in terms of the Riemann tensor. This "behavior" that leads to geometrical effects of curvature is characterized from the beginning by the fact that it concerns extensive domains of the manifold (although it should be pointed out that the values of the Weyl tensor change from point to point) by virtue of the fact that the action of matter elsewhere indefinitely acts. Finally, we think that the characteristic relationality of spacetime structure should be identified in this "primitive level of organization" of spacetime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Z(2)-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the multiscale entanglement renormalization ansatz (MERA) can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat space-like boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains. This result clarifies the nature of the ansatz, and suggests a generalization to quantum field theory. It also constitutes an independent justification of the connection between MERA and hyperbolic geometry which was proposed as a concrete implementation of the AdS-CFT correspondence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.