998 resultados para Space simulators
Resumo:
Includes bibliographical references.
Resumo:
"Project no. 6114, task no. 60806. Prepared under Contract no. AF 33(616)-6858 by W. A. Livingston Jr. of the Cornell Aeronautical Laboratory, Inc."
Resumo:
79 p.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Three comprehensive one-dimensional simulators were used on the same PC to simulate the dynamics of different electrophoretic configurations, including two migrating hybrid boundaries, an isotachophoretic boundary and the zone electrophoretic separation of ten monovalent anions. Two simulators, SIMUL5 and GENTRANS, use a uniform grid, while SPRESSO uses a dynamic adaptive grid. The simulators differ in the way components are handled. SIMUL5 and SPRESSO feature one equation for all components, whereas GENTRANS is based on the use of separate modules for the different types of monovalent components, a module for multivalent components and a module for proteins. The code for multivalent components is executed more slowly compared to those for monovalent components. Furthermore, with SIMUL5, the computational time interval becomes smaller when it is operated with a reduced calculation space that features moving borders, whereas GENTRANS offers the possibility of using data smoothing (removal of negative concentrations), which can avoid numerical oscillations and speed up a simulation. SPRESSO with its adaptive grid could be employed to simulate the same configurations with smaller numbers of grid points and thus is faster in certain but not all cases. The data reveal that simulations featuring a large number of monovalent components distributed such that a high mesh is required throughout a large proportion of the column are fastest executed with GENTRANS.
Resumo:
Prepared at Langley Research Center.
Resumo:
Computer models, or simulators, are widely used in a range of scientific fields to aid understanding of the processes involved and make predictions. Such simulators are often computationally demanding and are thus not amenable to statistical analysis. Emulators provide a statistical approximation, or surrogate, for the simulators accounting for the additional approximation uncertainty. This thesis develops a novel sequential screening method to reduce the set of simulator variables considered during emulation. This screening method is shown to require fewer simulator evaluations than existing approaches. Utilising the lower dimensional active variable set simplifies subsequent emulation analysis. For random output, or stochastic, simulators the output dispersion, and thus variance, is typically a function of the inputs. This work extends the emulator framework to account for such heteroscedasticity by constructing two new heteroscedastic Gaussian process representations and proposes an experimental design technique to optimally learn the model parameters. The design criterion is an extension of Fisher information to heteroscedastic variance models. Replicated observations are efficiently handled in both the design and model inference stages. Through a series of simulation experiments on both synthetic and real world simulators, the emulators inferred on optimal designs with replicated observations are shown to outperform equivalent models inferred on space-filling replicate-free designs in terms of both model parameter uncertainty and predictive variance.
Resumo:
In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.