986 resultados para Space objects
Resumo:
Measurement association and initial orbit determination is a fundamental task when building up a database of space objects. This paper proposes an efficient and robust method to determine the orbit using the available information of two tracklets, i.e. their line-of-sights and their derivatives. The approach works with a boundary-value formulation to represent hypothesized orbital states and uses an optimization scheme to find the best fitting orbits. The method is assessed and compared to an initial-value formulation using a measurement set taken by the Zimmerwald Small Aperture Robotic Telescope of the Astronomical Institute at the University of Bern. False associations of closely spaced objects on similar orbits cannot be completely eliminated due to the short duration of the measurement arcs. However, the presented approach uses the available information optimally and the overall association performance and robustness is very promising. The boundary-value optimization takes only around 2% of computational time when compared to optimization approaches using an initial-value formulation. The full potential of the method in terms of run-time is additionally illustrated by comparing it to other published association methods.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
要测量出一组特征点分别在两个空间坐标系下的坐标 ,就可以求解两个空间目标间的位姿关系 .实现上述目标位姿测量方法的前提条件是要保证该组特征点在不同坐标系下 ,其位置关系相同 ,但计算误差的存在却破坏了这种固定的位置关系 .为此 ,提出了两种基于模型的三维视觉方法——基于模型的单目视觉和基于模型的双目视觉 ,前者从视觉计算的物理意义入手 ,通过简单的约束迭代求解实现模型约束 ;后者则将简单的约束最小二乘法和基于模型的单目视觉方法融合在一起来实现模型约束 .引入模型约束后 ,单目视觉方法可以达到很高的测量精度 .而基于模型的双目视觉较传统的无模型立体视觉方法位移精度提高有限 ,但姿态精度提高很多
Resumo:
Autopoietic theory is increasingly seen as a candidate for a radical theory of law, both in relation to its theoretical credentials and its relevance in terms of new and emerging forms of law. An aspect of the theory that has remained less developed, however, is its material side, and more concretely the theory’s accommodation of bodies, space, objects and their claim to legal agency. The present article reads Luhmann’s theory of autopoietic systems in a radical and material manner, linking it on the one hand to current post-structural theorisations of law and society, and on the other hand extending its ambit to accommodate the influx of material considerations that have been working their way through various other disciplines. The latter comprises both a materialisation of the theory itself and ways of conceptualising the legal system as material through and through. This I do by further developing what I have called Critical Autopoiesis, namely an acentric, topological, post-ecological and posthuman understanding of Luhmann’s theory, that draws on Deleuzian thought, feminist theory, geography, non-representational theory, and new material and object-oriented ontologies. These are combined with some well-rehearsed autopoietic concepts, such as distinction, environment and boundaries; Luhmann’s earlier work on materiality continuum; more recent work on bodies and space; as well as his work on form and medium in relation to art. The article concludes with five suggestions for an understanding of what critical autopoietic materiality might mean for law.
Resumo:
Nowadays, we return to live a period of lunar exploration. China, Japan and India heavily invest in missions to the moon, and then try to implement manned bases on this satellite. These bases must be installed in polar regions due to the apparent existence of water. Therefore, the study of the feasibility of satellite constellations for navigation, control and communication recovers importance. The Moon's gravitational potential and resonant movements due to the proximity to Earth as the Kozai-Lidov resonance, must be considered in addition to other perturbations of lesser magnitude. The usual satellite constellations provide, as a basic feature, continuous and global coverage of the Earth. With this goal, they are designed for the smallest number of objects possible to perform a specific task and this amount is directly related to the altitude of the orbits and visual abilities of the members of the constellation. However the problem is different when the area to be covered is reduced to a given zone. The required number of space objects can be reduced. Furthermore, depending on the mission requirements it may be not necessary to provide continuous coverage. Taking into account the possibility of setting up a constellation that covers a specific region of the Moon on a non-continuous base, in this study we seek a criterion of optimization related to the time between visits. The propagation of the orbits of objects in the constellation in conjunction with the coverage constraints, provide information on the periods of time in which points of the surface are covered by a satellite, and time intervals in which they are not. So we minimize the time between visits considering several sets of possible constellations and using genetic algorithms.
Resumo:
Identificar e interpretar, a partir de abordagem etnográfica, o patrimônio cultural dos trabalhadores do Ver-o-Peso, a feira mais famosa de Belém do Pará, é o objetivo deste trabalho. Não o patrimônio cultural brasileiro, reconhecido por meio do tombamento em 1977, como conjunto arquitetônico e paisagístico, mas o patrimônio que constitui elemento agregador para esse grupo social, fator de pertencimento e identidade coletiva, que é detentor de valores e significados, ainda que, raramente, seja percebido e identificado por esses trabalhadores dessa forma. A pesquisa, realizada por meio de observação participante, entrevistas semi-estruturadas e informais aconteceu no período de 2005 a 2007, em quatro etapas. O patrimônio cultural identificado é, sobretudo de natureza imaterial, mas também está presente em tomo de coisas materiais como o espaço, no sentido de um território com temporal idade própria que é também um lugar, demarcado por práticas sociais e operações cotidianas, as quais envolvem múltiplas dimensões da vida social. Nesse espaço objetos, expressões corporais, sentimentos e sociabilidade associadas e desenvolvidas no fazer diário, prenhes de significados e possibilidades estimulam o imaginário e ativam memórias. De geração a geração esse legado é o responsável, juntamente com aqueles que o preservam, reinterpretam e transmitem, pela manutenção da "essência" do Ver-o-Peso, assim como pelo sentido de pertencimento e identificação de seus trabalhadores com esse lugar ao longo dos anos. A despeito da negligência por parte de muitas instituições, esses trabalhadores e trabalhadoras preservam sua cultura.
Resumo:
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.
Resumo:
In this paper, I show how new spaces are being prefigured for colonisation in the language of contemporary technology policy. Drawing on a corpus of 1.3 million words collected from technology policy centres throughout the world, I show the role of policy language in creating the foundations of an emergent form of political economy. The analysis is informed by principles from critical discourse analysis (CDA) and classical political economy. It foregrounds a functional aspect of language called process metaphor to show how aspects of human activity are prefigured for mass commodification by the manipulation of irrealis spaces. I also show how the fundamental element of any new political economy, the property element, is being largely ignored. The potential creation of a global space as concrete as landed property – electromagnetic spectrum – has significant ramifications for the future of social relations in any global “knowledge economy”.
Resumo:
The films of Wes Anderson feature a peculiar attention to the representation of dwellings in relation to narrative development, filmic style and characters' identities. As is true of clothing, in Anderson's cinema homes with their architecture, furniture and objects strongly contribute to a nostalgic dislocation of the characters from contemporary time. Considering the house as the prime locus of identity and the core of the patriarchal family, the family home is often depicted by Anderson as the last physical trace left by the absent father; a utopian place that the characters aim to rebuild or to recall through its objectification. This paper aims to analyse the (re)construction of the family home in The Royal Tenenbaums, and will investigate its absence and surrogates in The Darjeeling Ltd.
Resumo:
Defensive behaviors, such as withdrawing your hand to avoid potentially harmful approaching objects, rely on rapid sensorimotor transformations between visual and motor coordinates. We examined the reference frame for coding visual information about objects approaching the hand during motor preparation. Subjects performed a simple visuomanual task while a task-irrelevant distractor ball rapidly approached a location either near to or far from their hand. After the distractor ball appearance, single pulses of transcranial magnetic stimulation were delivered over the subject's primary motor cortex, eliciting motor evoked potentials (MEPs) in their responding hand. MEP amplitude was reduced when the ball approached near the responding hand, both when the hand was on the left and the right of the midline. Strikingly, this suppression occurred very early, at 70-80ms after ball appearance, and was not modified by visual fixation location. Furthermore, it was selective for approaching balls, since static visual distractors did not modulate MEP amplitude. Together with additional behavioral measurements, we provide converging evidence for automatic hand-centered coding of visual space in the human brain.