971 resultados para Sorghum Brachypodum


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Testing ecological models for management is an increasingly important part of the maturation of ecology as an applied science. Consequently, we need to work at applying fair tests of models with adequate data. We demonstrate that a recent test of a discrete time, stochastic model was biased towards falsifying the predictions. If the model was a perfect description of reality, the test falsified the predictions 84% of the time. We introduce an alternative testing procedure for stochastic models, and show that it falsifies the predictions only 5% of the time when the model is a perfect description of reality. The example is used as a point of departure to discuss some of the philosophical aspects of model testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5±0.41; WSF 77.2±0.33; and SB 60.3±0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundnut shell (GS), after separation of pod, is readily available as a potential feedstock for production of fermentable sugars. The substrate was delignified with sodium sulfite. The delignified substrate released 670 mg/g of sugars after enzymatic hydrolysis (50 degrees C, 120 rpm, 50 hrs) using commercial cellulases (Dyadic Xylanase PLUS, Dyadic Inc. USA). The groundnut shell enzymatic hydrolysate (45.6 g/L reducing sugars) was fermented for ethanol production with free and sorghum stalks immobilized cells of Pichia stipitis NCIM 3498 under submerged cultivation conditions. Immobilization of yeast cells on sorghum stalks were confirmed by scanning electron microscopy (SEM). A maximum of ethanol production (17.83 g/L, yield 0.44 g/g and 20.45 g/L, yield 0.47 g/g) was observed with free and immobilized cells of P. stipitis respectively in batch fermentation conditions. Recycling of immobilized cells showed a stable ethanol production (20.45 g/L, yield 0.47 g/g) up to 5 batches followed by a gradual downfall in subsequent cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop rotation can play a valuable role in managing plant parasitic nematodes, depending on the availability of profitable non-host or poor host crops. Alternatively, non-host cover crops or green manures can be used in succession to summer cash Crops for this Purpose. The aim of the current study was to evaluate, under greenhouse conditions, the host status of commercial hybrids and cultivars of grain and silage sorghum (Sorghum bicolor) for Meloidogyne javanica, and to assess the effect of sorghum on nematode population in comparison with pearl millet (poor host for M. javanica), showy crotalaria and sunn hemp (both non-hosts). Based on two experiments, it was stated that, as a rule, grain sorghum is a poor host for M. javanica, but silage sorghum is a good host. Silage sorghum `BRS 601` was an exception. In other experiments, grain sorghum, pearl millet (Pennisetum glaucum `BN 2`), showy crotalaria (Crotolaria spectabilis `Comum`) and sunn hemp (C. juncea `IAC-KR-1`) reduced M. javanica population level, while silage sorghum increased the nematode density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One sorghum commercial genotype (MASSA 03) and nine ICRISAT high-lysine genotypes from India were analyzed for storage protein content, distribution profile, and soluble amino acid concentrations. Storage proteins fraction were extracted and separated by SDS-PAGE. Soluble amino acids contents were determined by HPLC. Variations in intensity and appearance and disappearance of protein bands were observed among the sorghum genotypes suggesting genetic variability. Amino acid profile also indicated large variations in the amino acid concentrations. The high lysine and threonine soluble concentrations observed in the seeds of the sorghum genotypes encouraged the use of these genotypes as potential food source due to the better balanced amino acids profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transpiration efficiency, W, the ratio of plant carbon produced to water transpired and carbon isotope discrimination of leaf dry matter, Delta(d)' were measured together on 30 lines of the C-4 species, Sorghum bicolor in the glasshouse and on eight lines grown in the field. In the glasshouse, the mean W observed was 4.9 mmol C mol(-1) H2O and the range was 0.8 mmol C mol(-1) H2O The mean Delta(d) was 3.0 parts per thousand and the observed range was 0.4 parts per thousand. In the field, the mean W was lower at 2.8 mmol C mol H2O and the mean Delta(d) was 4.6 parts per thousand. Significant positive correlations between W and Delta(d) were observed for plants grown in the glasshouse and in the field. The observed correlations were consistent with theory, opposite to those for C-4 species, and showed that variation in Delta(d) was an integrated measure of long-term variation in the ratio of intercellular to ambient CO2 partial pressure, p(i)/p(a). Detailed gas exchange measurements of carbon isotope discrimination during CO2 uptake, Delta(A) and p(i)/p(a) were made on leaves of eight S. bicolor lines. The observed relationship between Delta(A) and p(i)/p(a) was linear with a negative slope of 3.7 parts per thousand in Delta(A) for a unit change in p(i)/p(a). The slope of this linear relationship between Delta(A) and p(i)/p(a) in C-4 species is dependent on the leakiness of the CO2 concentrating mechanism of the C pathway, We estimated the leakiness (defined as the fraction of CO2 released in the bundle sheath by C-4 acid decarboxylations, which is lost by leakage) to be 0.2. We conclude that, although variation in Delta(d) observed in the 30 lines of S. bicolor is smaller than that commonly observed in C-4 species, it also reflects variation in transpiration efficiency, W. Among the eight lines examined in detail and in the environments used, there was considerable genotype x environment interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant architecture has been neglected in most studies of biomass allocation in crops. To help redress this situation for grain sorghum (Sorghum bicolor (L.) Moench), we used a 3D digitiser to measure the dimensions and orientations of vegetative and reproductive structures and derived thermal time-based functions for architectural changes during morphogenesis. Our plants, which were grown in a greenhouse, controlled environment cabinets and the field, covered a large, three-fold, size range when mature. This allowed us to detect some general architectural relationships and to fit morphogenetic functions common across the size range we observed. For example, the relationship between the lengths of successive fully-expanded leaves within a plant was nearly constant for all plants. The lengths of existing leaf blades were accurate predictors of the lengths of up to six subsequently-formed blades in our plants. Similar constant relationships were detected for internode lengths in the panicle and for heights above ground of the collars of successive leaves, even though these traits varied a lot between growth conditions. We suggest that such architectural relationships may be used to link the effect of previous growth conditions to future growth potential, and in that way to predict future partitioning. Our results provide the basis for a preliminary model of sorghum morphogenesis which could eventually become useful in conjunction with crop models by allowing resource acquisition to be related to changes in plant architecture during development. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop grown in a wide range of tropical and temperate environments. This study was conducted to characterise the photothermal flowering responses of sorghum genotypes and to examine relationships between photothermal characteristics and environment of origin in order to better understand the phenological basis of adaptation to environment in sorghum. Twenty-four germplasm accessions and one hybrid from 24 major sorghum-growing areas were grown in a wide range of environments varying in temperature and photoperiod in India, Kenya and Mall between 1992 and 1995. Times from sowing to flowering (f) were recorded, and the responsiveness of 1/f to temperature and photoperiod was quantified using photothermal models. Times from sowing to flowering were accurately predicted in a wide range of environments using a multiplicative rate photothermal model. Significant variation in the minimum time to flower (F-m) and photoperiod sensitivity (critical photoperiod, P-c, and photoperiod-sensitivity slope, P-s) was observed among the genotypes; in contrast there was little variation in base temperature (Tb) Adaptation of sorghum to the diverse environments in which it is grown was largely determined by photoperiod sensitivity and minimum time to flower; photoperiod sensitivity determines bread adaptation to latitude (daylength), while variation in the minimum time to flower determines specific adaptation within smaller ranges of latitude, e.g. within the humid and sub-humid tropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of sorghum [Sorghum bicolor (L.) Moench], an important cereal crop in semiarid regions of the world, is often limited by drought. When water is limiting during the grain-filling period, hybrids possessing the stay-green trait maintain more photosynthetically active leaves than hybrids not possessing this trait. To improve yield under drought, knowledge of the extent of genetic variation in green leaf area retention is required. Field studies were undertaken in north-eastern Australia on a cracking and self-mulching gray clay to determine the effects of water regime and hybrid on the components of green leaf area at maturity (GLAM). Nine hybrids varying in stay-green were grown under a fully irrigated control, postflowering water deficit, and terminal (pre- and postflowering) water deficit. Water deficit reduced GLAM by 67% in the terminal drought treatment compared with the fully irrigated control. Under terminal water deficit, hybrids possessing the B35 and KS19 sources of stay-green retained more GLAM (1260 cm(2) plant(-1)) compared with intermediate (780 cm(2) plant(-1)) and senescent (670 cm(2) plant(-1)) hybrids. RQL12 hybrids (KS19 source of stay-green) displayed delayed onset and reduced rate of senescence; A35 hybrids displayed only delayed onset. Visual rating of green leaf retention was highly correlated with measured GLAM, although this procedure is constrained by an inability to distinguish among the functional mechanisms determining the phenotype. Linking functional rather than phenotypic differences to molecular markers may improve the efficiency of selecting for traits such as stay-green.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sorghum [Sorghum bicolor (L,) Moench] hybrids containing the stay-green trait retain more photosynthetically active leaves under drought than do hybrids that do not contain this trait. Since the Longevity and photosynthetic capacity of a leaf are related to its N status, it is important to clarify the role of N in extending leaf greenness in stay-green hybrids. Field studies were conducted in northeastern Australia to examine the effect of three water regimes and nine hybrids on N uptake and partitioning among organs. Nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a fully irrigated control, post-flowering water deficit, and terminal water deficit. For hybrids grown under terminal water deficit, stay-green was viewed as a consequence of the balance between N demand by the grain and N supply during gain filling. On the demand side, grain numbers were 16% higher in the four stay-green than in the five senescent hybrids. On the supply side, age-related senescence provided an average of 34 and 42 kg N ha(-1) for stay-green and senescent hybrids, respectively. In addition, N uptake during grain filling averaged 116 and 82 kg ha(-1) in stay-green and senescent hybrids. Matching the N supply from these two sources with grain N demand found that the shortfall in N supply for grain filling in the stay-green and senescent hybrids averaged 32 and 41 kg N ha(-1) resulting in more accelerated leaf senescence in the senescent hybrids. Genotypic differences in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen and N uptake during grain filling. Leaf nitrogen concentration at anthesis was correlated with onset (r = 0.751**, n = 27) and rate (r = -0.783**, n = 27) of leaf senescence ender terminal water deficit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glasshouse study examined 49 diverse sorghum lines for variation in transpiration efficiency. Three of the 49 lines grown were Sorghum spp, native to Australia; one was the major weed Johnson grass (Sorghum halepense), and the remaining 45 lines were cultivars of Sorghum bicolor. All plants were grown under non-limiting water and nutrient conditions using a semi-automatic pot watering system designed to facilitate accurate measurement of water use. Plants were harvested 56-58 days after sowing and dry weights of plant parts were determined. Transpiration efficiency differed significantly among cultivars. The 3 Australian native sorghums had much lower transpiration efficiency than the other 46 cultivars, which ranged from 7.7 to 6.0 g/kg. For the 46 diverse cultivars, the ratio of range in transpiration efficiency to its l.s.d. was 2.0, which was similar to that found among more adapted cultivars in a previous study. This is a significant finding as it suggests that there is likely to be little pay-off from pursuing screening of unadapted material for increased variation in transpiration efficiency. It is necessary, however, also to examine absolute levels of transpiration efficiency to determine whether increased levels have been found. The cultivar with greatest transpiration efficiency in this study (IS9710) had a value 9% greater (P < 0.05) than the accepted standard for adapted sorghum cultivars. The potential impact of such an increase in transpiration efficiency warrants continued effort to capture it. Transpiration efficiency has been related theoretically and experimentally to the degree of carbon isotope discrimination in leaf tissue in sorghum, which thus offers a relatively simple selection index. In this study, the variation in transpiration efficiency was not related simply to carbon isotope discrimination. Significant associations of transpiration efficiency with ash content and indices of photosynthetic capacity were found. However, the associations were not strong. These results suggest that a simple screening technique could not be based on any of the measures or indices analysed in this study. A better understanding of the physiological basis of the observed genetic differences in transpiration efficiency may assist in developing reliable selection indices. It was concluded that the potential value of the improvement in transpiration efficiency over the accepted standard and the degree of genetic variation found warrant further study on this subject. It was suggested that screening for genetic variation under water-limiting conditions may provide useful insights and should be pursued.

Relevância:

20.00% 20.00%

Publicador: