920 resultados para Sophisticated Instruments Facility
Resumo:
Measurement is the act or the result of a quantitative comparison between a given quantity and a quantity of the same kind chosen as a unit. It is generally agreed that all measurements contain errors. In a measuring system where both a measuring instrument and a human being taking the measurement using a preset process, the measurement error could be due to the instrument, the process or the human being involved. The first part of the study is devoted to understanding the human errors in measurement. For that, selected person related and selected work related factors that could affect measurement errors have been identified. Though these are well known, the exact extent of the error and the extent of effect of different factors on human errors in measurement are less reported. Characterization of human errors in measurement is done by conducting an experimental study using different subjects, where the factors were changed one at a time and the measurements made by them recorded. From the pre‐experiment survey research studies, it is observed that the respondents could not give the correct answers to questions related to the correct values [extent] of human related measurement errors. This confirmed the fears expressed regarding lack of knowledge about the extent of human related measurement errors among professionals associated with quality. But in postexperiment phase of survey study, it is observed that the answers regarding the extent of human related measurement errors has improved significantly since the answer choices were provided based on the experimental study. It is hoped that this work will help users of measurement in practice to better understand and manage the phenomena of human related errors in measurement.
Resumo:
La prima parte del nostro studio riguarda la tecnica LAMP (Loop-mediated isothermal amplification), una tecnica di amplificazione isotermica recentemente inventata (Notomi et al., 2000). Essa presenta notevoli vantaggi rispetto alle tradizionali PCR: non necessita di strumentazioni sofisticate come i termociclatori, può essere eseguita da personale non specializzato, è una tecnica altamente sensibile e specifica ed è molto tollerante agli inibitori. Tutte queste caratteristiche fanno sì che essa possa essere utilizzata al di fuori dei laboratori diagnostici, come POCT (Point of care testing), con il vantaggio di non dover gestire la spedizione del campione e di avere in tempi molto brevi risultati paragonabili a quelli ottenuti con la tradizionale PCR. Sono state prese in considerazione malattie infettive sostenute da batteri che richiedono tempi molto lunghi per la coltivazione o che non sono addirittura coltivabili. Sono stati disegnati dei saggi per la diagnosi di patologie virali che necessitano di diagnosi tempestiva. Altri test messi a punto riguardano malattie genetiche del cane e due batteri d’interesse agro-alimentare. Tutte le prove sono state condotte con tecnica real-time per diminuire il rischio di cross-contaminazione pur riuscendo a comprendere in maniera approfondita l’andamento delle reazioni. Infine è stato messo a punto un metodo di visualizzazione colorimetrico utilizzabile con tutti i saggi messi a punto, che svincola completamente la reazione LAMP dall’esecuzione in un laboratorio specializzato. Il secondo capitolo riguarda lo studio dal punto di vista molecolare di un soggetto che presenza totale assenza di attività mieloperossidasica all’analisi di citochimica automatica (ADVIA® 2120 Hematology System). Lo studio è stato condotto attraverso amplificazione e confronto dei prodotti di PCR ottenuti sul soggetto patologico e su due soggetti con fenotipo wild-type. Si è poi provveduto al sequenziamento dei prodotti di PCR su sequenziatore automatico al fine di ricercare la mutazione responsabile della carenza di MPO nel soggetto indicato.
Resumo:
Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
At the research reactor Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) a new Prompt Gamma-ray Activation Analysis (PGAA) facility was installed. The instrument was originally built and operating at the spallation source at the Paul Scherrer Institute in Switzerland. After a careful re-design in 2004–2006, the new PGAA instrument was ready for operation at FRM II. In this paper the main characteristics and the current operation conditions of the facility are described. The neutron flux at the sample position can reach up 6.07×1010 [cm−2 s−1], thus the optimisation of some parameters, e.g. the beam background, was necessary in order to achieve a satisfactory analytical sensitivity for routine measurements. Once the optimal conditions were reached, detection limits and sensitivities for some elements, like for example H, B, C, Si, or Pb, were calculated and compared with other PGAA facilities. A standard reference material was also measured in order to show the reliability of the analysis under different conditions at this instrument.
Resumo:
The Imager for Low Energetic Neutral Atoms test facility at the University of Bern was developed to investigate, characterize, and quantify physical processes on surfaces that are used to ionize neutral atoms before their analysis in neutral particle-sensing instruments designed for space research. The facility has contributed valuable knowledge of the interaction of ions with surfaces (e.g., fraction of ions scattered from surfaces and angular scattering distribution) and employs a novel measurement principle for the determination of secondary electron emission yields as a function of energy, angle of incidence, particle species, and sample surface for low particle energies. Only because of this test facility it was possible to successfully apply surface-science processes for the new detection technique for low-energetic neutral particles with energies below about 1 keV used in space applications. All successfully flown spectrometers for the detection of low-energetic neutrals based on the particle–surface interaction process use surfaces evaluated, tested, and calibrated in this facility. Many instruments placed on different spacecraft (e.g., Imager for Magnetopause-to-Aurora Global Exploration, Chandrayaan-1, Interstellar Boundary Explorer, etc.) have successfully used this technique.
Resumo:
The ESS-Bilbao facility, hosted by the University of the Basque Country (UPV/EHU), envisages the operation of a high-current proton accelerator delivering beams with energies up to 50 MeV. The time-averaged proton current will be 2.25 mA, delivered by 1.5 ms proton pulses with a repetition rate of 20 Hz. This beam will feed a neutron source based upon the Be (p,n) reaction, which will enable the provision of relevant neutron experimentation capabilities. The neutron source baseline concept consists in a rotating beryllium target cooled by water. The target structure will comprise a rotatable disk made of 6061-T6 aluminium alloy holding 20 beryllium plates. Heat dissipation from the target relies upon a distribution of coolant-flow channels. The practical implementation of such a concept is here described with emphasis put on the beryllium plates thermo-mechanical optimization, the chosen coolant distribution system as well as the mechanical behavior of the assembly.
Resumo:
"October 1980."
Resumo:
"June 1979."
Resumo:
Measurement instruments are an integral part of clinical practice, health evaluation and research. These instruments are only useful and able to present scientifically robust results when they are developed properly and have appropriate psychometric properties. Despite the significant increase of rating scales, the literature suggests that many of them have not been adequately developed and validated. The scope of this study was to conduct a narrative review on the process of developing new measurement instruments and to present some tools which can be used in some stages of the development process. The steps described were: I-The establishment of a conceptual framework, and the definition of the objectives of the instrument and the population involved; II-Development of the items and of the response scales; III-Selection and organization of the items and structuring of the instrument; IV-Content validity, V-Pre-test. This study also included a brief discussion on the evaluation of the psychometric properties due to their importance for the instruments to be accepted and acknowledged in both scientific and clinical environments.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física