921 resultados para Somatic Mutation and Recombination Test
Resumo:
Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Currently, there is increasing use of nanomaterials in the food industry thanks to the many advantages offered and make the products that contain them more competitive in the market. Their physicochemical properties often differ from those of bulk materials, which require specialized risk assessment. This should cover the risks to the health of workers and consumers as well as possible environmental risks. The risk assessment methods must go updating due to more widespread use of nanomaterials, especially now that are making their way down to consumer products. Today there is no specific legislation for nanomaterials, but there are several european dispositions and regulations that include them. This review gives an overview of the risk assessment and the existing current legislation regarding the use of nanotechnology in the food industry.
Resumo:
Considerando não apenas a importância das antraciclinas na terapêutica do câncer, mas também os efeitos colaterais associados ao uso destas drogas, o presente estudo procurou avaliar a atividade genotóxica de seis antraciclinas em uso clínico - doxorrubicina (DOX), daunorrubicina (DNR), epirrubicina (EPI), idarrubicina (IDA), além dos análogos de última geração, pirarrubicina (THP) e aclarrubicina (ACLA). Para tanto, foi empregado o Teste de Mutação e Recombinação Somática (SMART) em Drosophila melanogaster, que permite a detecção simultânea de mutação gênica e cromossômica, assim como de eventos relacionados com recombinação mitótica - possibilitando quantificar a contribuição deste último parâmetro genético para a genotoxicidade total induzida pelas drogas em estudo. Os dados obtidos a partir desta análise demonstraram que todas as antraciclinas estudadas induziram acréscimos significativos, relacionados tanto à mutação, quanto à recombinação nas células somáticas deste inseto. Além disso, a recombinação mitótica - entre cromossomos homólogos - foi o evento responsável por, aproximadamente, 62 a 100% da toxicidade genética observada. A comparação do potencial genotóxico dos diferentes análogos, através da padronização do número de danos genéticos por unidade de tratamento (mM), caracterizou a ACLA e o THP como as drogas mais potentes – sendo cerca de 20 vezes mais efetivas, como genotoxinas, do que a DOX, o análogo menos potente. Já que a principal ação genotóxica desta família de compostos está relacionada à inibição da topoisomerase II (topo II) – uma enzima que atua no relaxamento da supertorção da dupla hélice de DNA, através da quebra e posterior religação de suas fitas - as diferenças observadas podem ser atribuídas ao mecanismo envolvido neste bloqueio Enquanto os análogos DOX, DNR, EPI, IDA e THP atuam como venenos de topo II - tornando permanentes as quebras induzidas pela enzima - a ACLA inibe a função catalítica desta enzima, impedindo a sua ligação ao DNA. Cabe ainda ressaltar que a genotoxicidade da ACLA não está restrita à sua atividade catalítica sobre a topo II, mas também à sua ação como veneno de topo I e à sua habilidade de intercalar-se na molécula de DNA. Quando a potência genotóxica destas drogas foi associada a suas estruturas químicas, observou-se que substituições no grupamento amino-açúcar levaram a uma maior atividade tóxico-genética, quando comparadas a modificações no cromóforo. Cabe ainda ressaltar que as modificações estruturais, presentes nos análogos DOX, DNR, EPI, IDA e THP, não alteraram a sua ação recombinogênica. No entanto, no que se refere a ACLA, observaram-se decréscimos significativos na indução de recombinação mitótica - que podem ser atribuídas às múltiplas substituições presentes tanto no grupamento amino-açúcar quanto no cromóforo. O conjunto destas observações evidencia que a genotoxicidade total das drogas em estudo está centrada na indução de recombinação homóloga - um evento predominantemente envolvido tanto na iniciação, quanto na progressão do câncer. A alta incidência de tumores secundários, em pacientes submetidos ao tratamento com as antraciclinas, pode, pois, ser atribuída à ação preferencial destas drogas sobre a recombinação mitótica – embora a atividade mutagênica não possa ser desconsiderada.
Resumo:
Unique and shared cytogenetic abnormalities have been documented for marginal zone lymphomas (MZLs) arising at different sites. Recently, homozygous deletions of the chromosomal band 6q23, involving the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) gene, a negative regulator of NF-kappaB, were described in ocular adnexal MZL, suggesting a role for A20 as a tumor suppressor in this disease. Here, we investigated inactivation of A20 by DNA mutations or deletions in a panel of extranodal MZL (EMZL), nodal MZL (NMZL), and splenic MZL (SMZL). Inactivating mutations encoding truncated A20 proteins were identified in 6 (19%) of 32 MZLs, including 2 (18%) of 11 EMZLs, 3 (33%) of 9 NMZLs, and 1 (8%) of 12 SMZLs. Two additional unmutated nonsplenic MZLs also showed monoallelic or biallelic A20 deletions by fluorescent in situ hybridization (FISH) and/or SNP-arrays. Thus, A20 inactivation by either somatic mutation and/or deletion represents a common genetic aberration across all MZL subtypes, which may contribute to lymphomagenesis by inducing constitutive NF-kappaB activation.
Resumo:
Craniopharyngioma is the most common childhood tumor and thought to arise from embryonic remnants of Rathke's pouch. The paucity of published data on the molecular basis of these tumors prompted us to examine 22 adamantinomatous craniopharyngiomas looking for genetic abnormalities. Using the X-linked polymorphic androgen receptor gene as a tool for X-chromosome inactivating analysis, we found that a subset of craniopharyngiomas are monoclonal and therefore are probably due to acquired somatic genetic defects. Thus, we investigated these tumours for mutations within three candidate genes, Gsα, Gi2α and patched (PTCH). Using single stranded conformational polymorphism (SSCP), denaturing gradient gel electrophoresis and direct sequencing, the presence of somatic mutations in these genes could not be demonstrated in any tumor. Our data indicate that a subset of craniopharyngiomas are monoclonal and the mutations in the PTCH, Gsα, and Gi2α contribute little if any to cranipharyngioma development.
Resumo:
The leader protease (L-pro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968-2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups - Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (<5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or onvergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the L-pro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the L-pro (P<0.05; 0.046*) and at aa 171 in the capsid protein VP1 (P<0.01; 0.003**).
Resumo:
Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N-e, are widely varying. Models assuming HIV-1 evolution to be neutral estimate N-e similar to 10(2)-10(4), smaller than the inverse mutation rate of HIV-1 (similar to 10(5)), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N-e>10(5), suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N-e similar to 10(3)-10(4), implying predominantly stochastic evolution. Interestingly, we find that N-e and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N-e>10(5) reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N-e similar to 10(3)-10(4) may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.
Resumo:
The chromosomal speciation hypothesis suggests that irregularities in synapsis, recombination, and segregation in heterozygotes for chromosome rearrangements may restrict gene flow between karyotypically distinct populations and promote speciation. Ctenomys talarum is a South American subterranean rodent inhabiting the coastal regions of Argentina, whose populations polymorphic for Robertsonian and tandem translocations seem to have a very restricted gene flow. To test if chromosomal differences are involved in isolation among its populations, we examined chromosome pairing, recombination, and meiotic silencing of unsynapsed chromatin in male meiosis of simple and complex translocation heterozygotes using immunolocalization of the MLH1 marking mature recombination nodules and phosphorylated histone γH2A.X marking unrepaired double-strand breaks. We observed small asynaptic areas labeled by γH2A.X in pericentromeric regions of the chromosomes involved in the trivalents and quadrivalents. We also observed a decrease of recombination frequency and a distalization of the crossover distribution in the heterozygotes and metacentric homozygotes compared to acrocentric homozygotes. We suggest that the asynapsis of the pericentromeric regions are unlikely to induce germ cell death and decrease fertility of the heterozygotes; however, suppressed recombination in pericentromeric areas of the multivalents may reduce gene flow between chromosomally different populations of the Talas tuco-tuco.
Resumo:
The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.
Resumo:
Numerous genetic variants of the Echinococcus antigen B (AgB) are encountered within a single metacestode. This could be a reflection of gene redundancy or the result of a somatic hypermutation process. We evaluate the complexity of the AgB multigene family by characterizing the upstream promoter regions of the 4 already known genes (EgAgB1-EgAgB4) and evaluating their redundancy in the genome of 3 Echinococcus species (E. granulosus, E. ortleppi and E. multilocularis) using PCR-based approaches. We have ascertained that the number of AgB gene copies is quite variable, both within and between species. The most repetitive gene seems to be AgB3, of which there are more than 110 copies in E. ortleppi. For E. granulosus, we have cloned and characterized 10 distinct upstream promoter regions of AgB3 from a single metacestode. Our sequences suggest that AgB1 and AgB3 are involved in gene conversion. These results are discussed in light of the role of gene redundancy and recombination in parasite evasion mechanisms of host immunity, which at present are known for protozoan organisms, but virtually unknown for multicellular parasites.
Resumo:
OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.
Resumo:
B cell diffuse large cell lymphoma (B-DLCL) is a heterogeneous group of tumors, based on significant variations in morphology, clinical presentation, and response to treatment. Gene expression profiling has revealed two distinct tumor subtypes of B-DLCL: germinal center B cell-like DLCL and activated B cell-like DLCL. In a separate study, we determined that B-DLCL can also be subdivided into two groups based on the presence or absence of ongoing Ig gene hypermutation. Here, we evaluated the correlation between these B-DLCL subtypes established by the two different methods. Fourteen primary B-DLCL cases were studied by gene expression profiling using DNA microarrays and for the presence of ongoing mutations in their Ig heavy chain gene. All seven cases classified as germinal center B cell-like DLCL by gene expression showed the presence of ongoing mutations in the Ig genes. Five of the seven cases classified by gene expression as activated B cell-like DLCL had no ongoing somatic mutations, whereas, in the remaining two cases, a single point mutation was observed in only 2 of 15 and 21 examined molecular clones of variable heavy (VH) chain gene, respectively. These two cases were distantly related to the rest of the activated B cell-like DLCL tumors by gene expression. Our findings validate the concept that lymphoid malignancies are derived from cells at discrete stages of normal lymphocyte maturation and that the malignant cells retain the genetic program of those normal cells.
Resumo:
The RAD27 gene of Saccharomyces cerevisiae encodes a 5′-3′ flap exo/endonuclease, which plays an important role during DNA replication for Okazaki fragment maturation. Genetic studies have shown that RAD27 is not essential for growth, although rad27Δ mutants are temperature sensitive. Moreover, they exhibit increased sensitivity to alkylating agents, enhanced spontaneous recombination, and repetitive DNA instability. The conditional lethality conferred by the rad27Δ mutation indicates that other nuclease(s) can compensate for the absence of Rad27. Indeed, biochemical and genetical analyses indicate that Okazaki fragment processing can be assured by other enzymatic activities or by alternative pathways such as homologous recombination. Here we present the results of a screen that makes use of a synthetic lethality assay to identify functions required for the survival of rad27Δ strains. Altogether, we confirm that all genes of the Rad52 recombinational repair pathway are required for the survival of rad27Δ strains at both permissive (23°C) and semipermissive (30°C) temperatures for growth. We also find that several point mutations that confer weaker phenotypes in mitotic than in meiotic cells (rad50S, mre11s) and additional gene deletions (com1/sae2, srs2) exhibit synthetic lethality with rad27Δ and that rad59Δ exhibits synergistic effects with rad27Δ. This and previous studies indicate that homologous recombination is the primary, but not only, pathway that functions to bypass the replication defects that arise in the absence of the Rad27 protein.