923 resultados para Solving
Resumo:
Lellis-Santos C, Giannocco G, Nunes MT. The case of thyroid hormones: how to learn physiology by solving a detective case. Adv Physiol Educ 35: 219-226, 2011; doi:10.1152/advan.00135.2010.Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify the signs and symptoms of thyroid dysfunction. The present study aimed to create a new pedagogical approach to build deep knowledge about hypo-/hyperthyroidism by proposing a hands-on activity based on a detective case, using alternative materials in place of laboratory animals. After receiving a description of a criminal story involving changes in thyroid hormone economy, students collected data from clues, such as body weight, mesenteric vascularization, visceral fat, heart and thyroid size, heart rate, and thyroid-stimulating hormone serum concentration to solve the case. Nevertheless, there was one missing clue for each panel of data. Four different materials were proposed to perform the same practical lesson. Animals, pictures, small stuffed toy rats, and illustrations were all effective to promote learning, and the detective case context was considered by students as inviting and stimulating. The activity can be easily performed independently of the institution's purchasing power. The practical lesson stimulated the scientific method of data collection and organization, discussion, and review of thyroid hormone actions to solve the case. Hence, this activity provides a new strategy and alternative materials to teach without animal euthanization.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
A modified formula for the integral transform of a nonlinear function is proposed for a class of nonlinear boundary value problems. The technique presented in this paper results in analytical solutions. Iterations and initial guess, which are needed in other techniques, are not required in this novel technique. The analytical solutions are found to agree surprisingly well with the numerically exact solutions for two examples of power law reaction and Langmuir-Hinshelwood reaction in a catalyst pellet.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
In this study, the effectiveness of a group-based attention and problem solving (APS) treatment approach to executive impairments in patients with frontal lobe lesions was investigated. Thirty participants with lesions in the frontal lobes, 16 with left frontal (LF) and 14 with right frontal (RF) lesions, were allocated into three groups, each with 10 participants. The APS treatment was initially compared to two other control conditions, an information/education (IE) approach and treatment-as-usual or traditional rehabilitation (TR), with each of the control groups subsequently receiving the APS intervention in a crossover design. This design allowed for an evaluation of the treatment through assessment before and after treatment and on follow up, six months later. There was an improvement on some executive and functional measures after the implementation of the APS programme in the three groups. Size, and to a lesser extent laterality, of lesion affected baseline performance on measures of executive function, but there was no apparent relationship between size, laterality or site of lesion and level of benefit from the treatment intervention. The results were discussed in terms of models of executive functioning and the effectiveness of domain specific interventions in the rehabilitation of executive dysfunction.
Resumo:
A new wavelet-based adaptive framework for solving population balance equations (PBEs) is proposed in this work. The technique is general, powerful and efficient without the need for prior assumptions about the characteristics of the processes. Because there are steeply varying number densities across a size range, a new strategy is developed to select the optimal order of resolution and the collocation points based on an interpolating wavelet transform (IWT). The proposed technique has been tested for size-independent agglomeration, agglomeration with a linear summation kernel and agglomeration with a nonlinear kernel. In all cases, the predicted and analytical particle size distributions (PSDs) are in excellent agreement. Further work on the solution of the general population balance equations with nucleation, growth and agglomeration and the solution of steady-state population balance equations will be presented in this framework. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The main goal of this work is to solve mathematical program with complementarity constraints (MPCC) using nonlinear programming techniques (NLP). An hyperbolic penalty function is used to solve MPCC problems by including the complementarity constraints in the penalty term. This penalty function [1] is twice continuously differentiable and combines features of both exterior and interior penalty methods. A set of AMPL problems from MacMPEC [2] are tested and a comparative study is performed.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.
Resumo:
Solving systems of nonlinear equations is a problem of particular importance since they emerge through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a metaheuristic, called Directed Tabu Search (DTS) [16], is able to converge to the solutions of a set of problems for which the fsolve function of MATLAB® failed to converge. We also show the effect of the dimension of the problem in the performance of the DTS.
Resumo:
This papers aims at providing a combined strategy for solving systems of equalities and inequalities. The combined strategy uses two types of steps: a global search step and a local search step. The global step relies on a tabu search heuristic and the local step uses a deterministic search known as Hooke and Jeeves. The choice of step, at each iteration, is based on the level of reduction of the l2-norm of the error function observed in the equivalent system of equations, compared with the previous iteration.