911 resultados para Solvent Accessibility
Clustering of Protein Structures Using Hydrophobic Free Energy And Solvent Accessibility of Proteins
Resumo:
The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity.
Resumo:
In this study, we propose a novel method to predict the solvent accessible surface areas of transmembrane residues. For both transmembrane alpha-helix and beta-barrel residues, the correlation coefficients between the predicted and observed accessible surface areas are around 0.65. On the basis of predicted accessible surface areas, residues exposed to the lipid environment or buried inside a protein can be identified by using certain cutoff thresholds. We have extensively examined our approach based on different definitions of accessible surface areas and a variety of sets of control parameters. Given that experimentally determining the structures of membrane proteins is very difficult and membrane proteins are actually abundant in nature, our approach is useful for theoretically modeling membrane protein tertiary structures, particularly for modeling the assembly of transmembrane domains. This approach can be used to annotate the membrane proteins in proteomes to provide extra structural and functional information.
Resumo:
The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.
Resumo:
The conformational analysis by energy calculation is described for some acyclic sugars such as D-glucitol, D-mannitol and galactitol. Planar Zig-zag conformation is the most favoured conformation for the three alditols. However, the energy difference between the ‘bent-chain’ and ‘straight-chain’ conformation is less in the case of D-glucitol (0.9 Kcal Mole-1)compared to those of D-mannitol (~2.4 Kcal mole-1)and galactitol (~2.5 Kcal Mole-1).The solvent accessibility studies favour bent –chain conformation for D-glucitol and straight-chain conformation for D-mannitol and glactitol. These conformations, arrived at by theorticle analysis are compared with those abseverd in the solid state determined by X=ray differaction techinique and their acetylated derivatives in solution by NMR technique. These studies suggest that, when the energy difference between straight and bent conformations is small, latticc energy (in the case of solids) and solvent (in the case of solutions) do play a dominant role on the favoured conformations.
Resumo:
Molecular dynamics simulations have been carried out on all the jacalin-carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X-ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin-carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate-binding residues are consistent with the known thermodynamic parameters of jacalin-carbohydrate interactions. The simulations, along with X-ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin-carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009; 77:760-777.
Resumo:
It Is well established that a sequence template along with the database is a powerful tool for identifying the biological function of proteins. Here, we describe a method for predicting the catalytic nature of certain proteins among the several protein structures deposited in the Protein Data Bank (PDB) For the present study, we considered a catalytic triad template (Ser-His-Asp) found in serine proteases We found that a geometrically optimized active site template can be used as a highly selective tool for differentiating an active protein among several inactive proteins, based on their Ser-His-Asp interactions. For any protein to be proteolytic in nature, the bond angle between Ser O-gamma-Ser H-gamma His N-epsilon 2 in the catalytic triad needs to be between 115 degrees and 140 degrees The hydrogen bond distance between Ser H-gamma His N-epsilon 2 is more flexible in nature and it varies from 2 0 angstrom to 27 angstrom while in the case of His H-delta 1 Asp O-delta 1, it is from 1.6 angstrom to 2.0 angstrom In terms of solvent accessibility, most of the active proteins lie in the range of 10-16 angstrom(2), which enables easy accessibility to the substrate These observations hold good for most catalytic triads and they can be employed to predict proteolytic nature of these catalytic triads (C) 2010 Elsevier B V All rights reserved.
Resumo:
Protein structure validation is an important step in computational modeling and structure determination. Stereochemical assessment of protein structures examine internal parameters such as bond lengths and Ramachandran (phi, psi) angles. Gross structure prediction methods such as inverse folding procedure and structure determination especially at low resolution can sometimes give rise to models that are incorrect due to assignment of misfolds or mistracing of electron density maps. Such errors are not reflected as strain in internal parameters. HARMONY is a procedure that examines the compatibility between the sequence and the structure of a protein by assigning scores to individual residues and their amino acid exchange patterns after considering their local environments. Local environments are described by the backbone conformation, solvent accessibility and hydrogen bonding patterns. We are now providing HARMONY through a web server such that users can submit their protein structure files and, if required, the alignment of homologous sequences. Scores are mapped on the structure for subsequent examination that is useful to also recognize regions of possible local errors in protein structures. HARMONY server is located at http://caps.ncbs.res.in/harmony/
Resumo:
The conformation of an acyclic dehydrophenylalanine (delta Z-Phe) containing hexapeptide, Boc-Phe-delta Z-Phe-Val-Phe-delta Z-Phe-Val-OMe, has been investigated in CDCl3 and (CD3)2SO by 270-MHz 1H-nmr. Studies of NH group solvent accessibility and observation of interresidue nuclear Overhauser effects (NOEs) suggest a significant solvent-dependent conformational variability. In CDCl3, a population of folded helical conformations is supported by the inaccessibility to solvent of the NH groups of residues 3-6 and the detection of several NiH----Ni + 1H NOEs. Evidence is also obtained for conformational heterogeneity from the detection of some Ci alpha H----Ni + 1H NOEs characteristic of extended strands. In (CD3)2SO, the peptide largely favors an extended conformation, characterized by five solvent-exposed NH groups and successive Ci alpha H----Ni + 1H NOEs for the L-residues and Ci beta H----Ni + 1H NOEs for the delta Z-Phe residues. The results suggest that delta Z-Phe residues do not provide compelling conformational constraints.
Resumo:
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (Δz-Phe) at position 2 or 3, Boc-Leu-Ala-Δz-Phe-Leu-OMe (1) and Boc-Leu-Δz-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (CαjH ⇆ Ni+1H and NiH ⇆ Ni+1H) between backbone protons. The simultaneous observation of “mutually exclusive” n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-Δz-Phe- Type II β-turn structure and a second species with Δz-Phe adopting a partially extended conformation with Ψ values of ± 100° to ± 150°. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive β-turn structure for the -Leu-Δz-Phe-Ala- segment and an almost completely extended conformation.
Resumo:
We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein kinase C, casein kinase II) showed an increase (20-90%) on AAV2-mediated gene expression. The three-dimensional structure of AAV2 capsid was then analyzed to predict the sites of ubiquitination and phosphorylation. Three phosphodegrons, which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, were identified. Mutation targets comprising eight serine (S) or seven threonine (T) or nine lysine (K) residues were selected in and around phosphodegrons on the basis of their solvent accessibility, overlap with the receptor binding regions, overlap with interaction interfaces of capsid proteins, and their evolutionary conservation across AAV serotypes. AAV2-EGFP vectors with the wild-type (WT) capsid or mutant capsids (15 S/T -> alanine A] or 9 K -> arginine R] single mutant or 2 double K -> R mutants) were then evaluated in vitro. The transduction efficiencies of 11 S/T -> A and 7 K -> R vectors were significantly higher (similar to 63-90%) than the AAV2-WT vectors (similar to 30-40%). Further, hepatic gene transfer of these mutant vectors in vivo resulted in higher vector copy numbers (up to 4.9-fold) and transgene expression (up to 14-fold) than observed from the AAV2-WT vector. One of the mutant vectors, S489A, generated similar to 8-fold fewer antibodies that could be cross-neutralized by AAV2-WT. This study thus demonstrates the feasibility of the use of these novel AAV2 capsid mutant vectors in hepatic gene therapy.
Resumo:
The excited-state properties of trans-ReO2(py)4+ (ReO2+) in acetonitrile solution have been investigated. The excited-state absorption spectrum of ReO2+ is dominated by bleaching of the ground state MLCT and d-d systems. The reduction potential of ReO22+/+* is estimated from emission and electrochemical data to be -0.7 V (SSCE). The ReO2+ excited state efficiently reduces methylviologen and other pyridinium and olefin acceptors. The resulting Re(VI) species oxidizes secondary alcohols and silanes. Acetophenone is the product of sec-phenethyl alcohol oxidation.
The emission properties of ReO2+ in aqueous solutions of anionic and nonionic surfactants have been investigated. The emission and absorption maxima of ReO2+ are dependent on the water content of its environment. Emission lifetimes vary over four orders of magnitude upon shifting from aqueous to nonaqueous environments. The emission lifetime has a large (8.6) isotope effect (k(H2O)/k(D2O)) that reflects its sensitivity towards the environment. These properties have been used to develop a model for the interactions of ReO2+ with sodium dodecyl sulfate (SDS). A hydrophobic ReO2+ derivative, ReO2(3-Ph-py)4+, has been used to probe micelles of nonionic surfactants, and these results are consistent with those obtained with SDS.
The emission properties of ReO2+ in Nafion perfluorosulfonated membranes have been investigated. Absorption and emission spectroscopy indicate that the interior of the membrane is quite polar, similar to ethylene glycol. Two well-resolved emission components show different lifetimes and different isotope effects, indicative of varying degrees of solvent accessibility. These components are taken as evidence for chemically distinct regions in the polymer film, assigned as the interfacial region and the ion cluster region.
The unsubstituted pyridine complex shows monophasic, τ = 1.7 µs, emission decay when bound to calf thymus DNA. Switching to the 3-Ph-py complex yields a biphasic emission decay (τ1 = 2.4 µs, τ2 = 10 µs) indicative of an additional, solvent-inaccessible binding mode. Photoinduced electron transfer to methylviologen leads to oxidative cleavage of the DNA as detected by gel electrophoresis. Electrochemical and spectrophotometric techniques used with organic substrates also can be used to monitor the oxidation of DNA. Abstraction of the ribose 4' hydrogen by ReO22+ is a possible mechanism.