959 resultados para Solid-phase peptide synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS-ET), but we have elected the following as our first choice: 2.5-fold molar excess of 0.04-0.08 M Boc or Fmoc-amino acid derivative, equimolar amount of DIC/HOBt (1:1)or TBTU/DIPEA(1:3), 25% DMSO/toluene, 60 degrees C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave-SPPS, peptides containing L-Ser, L-His, L-Cys and/or L-Met were manually synthesized traditionally, at 60 degrees C using conventional heating and at 60 degrees C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave-assisted coupling of L-Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 degrees C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave-assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS-ET and suggests alternative conditions for microwave-assisted SPPS. Copyright (C) 2009 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on our studies of the stability of model peptide-resin linkage in acid media, we previously proposed a rule for resin selection and a final cleavage protocol applicable to the N-alpha-tert-butyloxycarbonyl (Boc)-peptide synthesis strategy. We found that incorrect choices resulted in decreases in the final synthesis yield, which is highly dependent on the peptide sequence, of as high as 30%. The present paper continues along this line of research but examines the N-alpha-9-fluorenylmethyloxycarbonyl (Fmoc)-synthesis strategy. The vasoactive peptide angiotensin II (All, DRVYIHPF) and its [Gly(8)]-All analogue were selected as model peptide resins. Variations in parameters such as the type of spacer group (linker) between the peptide backbone and the resin, as well as in the final acid cleavage protocol, were evaluated. The same methodology employed for the Boc strategy was used in order to establish rules for selection of the most appropriate linker-resin conjugate or of the peptide cleavage method, depending on the sequence to be assembled. The results obtained after treatment with four cleavage solutions and with four types of linker groups indicate that, irrespective of the circumstance, it is not possible to achieve complete removal of the peptide chains from the resin. Moreover, the Phe-attaching peptide at the C-terminal yielded far less cleavage (50-60%.) than that observed with the Gly-bearing sequences at the same position (70-90%). Lastly, the fastest cleavage occurred with reagent K acid treatment and when the peptide was attached to the Wang resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resin solvation properties affect the efficiency of the coupling reactions in solid-phase peptide synthesis. Here we report a novel approach to evaluate resin solvation properties, making use of spin label electron paramagnetic resonance (EPR) spectroscopy. The aggregating VVLGAAIV and ING sequences were assembled in benzhydrylamine-resin with different amino group contents (up to 2.6 mmol/g) to examine the extent of chain association within the beads. These model peptidyl-resins were first labeled at their N-terminus with the amino acid spin label 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Their solvation properties in different solvents were estimated, either by bead swelling measurement or by assessing the dynamics of their polymeric matrixes through the analysis of Toac EPR spectra, and were correlated with the yield of the acylation reaction. In most cases the coupling rate was found to depend on bead swelling. Comparatively, the EPR approach was more effective. Line shape analysis allowed the detection of more than one peptide chain population, which influenced the reaction. The results demonstrated the unique potential of EPR spectroscopy not only for improving the yield of peptide synthesis, even in challenging conditions, but also for other relevant polymer-supported methodologies in chemistry and biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Scintillation Proximity Assay (SPA) is a method that is frequently used to detect and quantify the strength of intermolecular interactions between a biological receptor and ligand molecule in aqueous media. This thesis describes the synthesis of scintillant-tagged-compounds for application in a novel cell-based SPA. A series of 4-functianlised-2,5-diphenyloxazole molecules were synthesised. These 4-functionalised-2,5-diphenyloxazoles were evaluated by Sense Proteomic Ltd. Accordingly, the molecules were evaluated for the ability to scintillate in the presence of ionising radiation. In addition, the molecules were incorporated into liposomal preparations which were subsequently evaluated for the ability to scintillate in the presence of ionising radiation. The optimal liposomal preparation was introduced into the membrane of HeLa cells that were used successfully in a cell-based SPA to detect and quantify the uptake of [14C]methionine. This thesis also describes the synthesis and subsequent polymerisation of novel poly(oxyethylene glycol)-based monomers to form a series of new polymer supports. These Poly(oxyethylene glycol)-polymer (POP) supports were evaluated for the ability to swell and mass-uptake in a variety of solvents, demonstrating that POP-supports exhibit enhanced solvent compatibilities over several commercial resins. The utility of POP-supports in solid-phase synthesis was also demonstrated successfully. The incorporation of (4’-vinyl)-4-benzyl-2,5-diphenyloxazole in varying mole percentage into the monomer composition resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents and scintillate efficiently in the presence of ionising radiation. The utility of POP-Sc supports in solid-phase synthesis and subsequent in-situ SPA to detect and quantify, in real-time, the kinetic progress of a solid-phase reaction was exemplified successfully.In addition, POP-Sc supports were used successfully both in solid-phase combinatorial synthesis of a peptide nucleic acid (PNA)-library and subsequent screening of this library for the ability to hybridise with DNA, which was labelled with a suitable radio-isotape. This data was used to identify the dependence of the number and position of complimentary codon pairs upon the extent of hybridisation. Finally, a further SPA was used to demonstrate the excellent compatibility of POP-Sc supports for use in the detection and quantification of enzyme assays conducted within the matrix of the POP-Sc support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, synthesis, and characterization of two novel metalloprotein motifs is presented. The first project involved the design and construction of a protein motif which was programmed to form a tetradentate metal complex upon the addition of metal cations. The overall structure of the motif was based on a ββ super-secondary structure consisting of a flexible peptide sequence flanked by metal binding regions located at the carboxy and amino termini. The metal binding region near the amino terminus was constructed from a reverse turn motif with two metal ligating residues, (2R, 3R)-β-methyl-cysteine and histidine. Selection of the peptide sequence for this region was based on the conformational analysis of a series of tetrapeptides designed to form reverse turns in solution.

The stereospecific syntheses of a series of novel bipyridyl- and phenanthrolylsubstituted amino acids was carried out to provide ligands for the carboxy terminus metal binding region. These residues were incorporated into peptide sequences using solid phase peptide synthesis protocols, and metal binding studies indicated that the metal binding properties of these ligands was dictated by the specific regioisomer of the heteroaromatic ring and the peptide primary sequence.

Finally, a peptide containing optimized components for the metal binding regions was prepared to test the ability of the compound to form the desired intramolecular peptide:metal cation complexes. Metal binding studies demonstrated that the peptide formed monomeric complexes with very high metal cation binding affinities and that the two metal binding regions act cooperatively in the metal binding process. The use of these systems in the design of proteins capable of regulating naturally occurring proteins is discussed.

The second project involved the semisynthesis of two horse heart cytochrome c mutants incorporating the bipyridyl-amino acids at position 72 of the protein sequence. Structural studies on the proteins indicated that the bipyridyl amino acids had a neglible effect on the protein structure. One of the mutants was modified with Ru(bpy)_2^(+2) to form a redox-active protein, and the modified protein was found to have enhanced electron transfer properties between the heme and the introduced metal site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent N(ϵ)-(3-[(*)I]iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-D-GEEEK (Mal-D-GEEEK-[(*)I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. METHODS: N(α)-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. RESULTS: NHS-[(131)I]IB-D-EEEG was produced in 53.8%±13.4% and conjugated to trastuzumab in 39.5%±7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[(131)I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[(125)I]IB demonstrated similar intracellular trapping for both conjugates at 1h ((131)I, 84.4%±6.1%; (125)I, 88.6%±5.2%) through 24h ((131)I, 60.7%±6.8%; (125)I, 64.9%±6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[(131)I]IB-D-EEEG, 29.8%±3.6%ID/g; trastuzumab-Mal-D-GEEEK-[(125)I]IB, 45.3%±5.3%ID/g) and was significantly higher for (125)I at all time points. In general, normal tissue levels were lower for trastuzumab-NHS-[(131)I]IB-D-EEEG, with the differences being greatest in kidneys ((131)I, 2.2%±0.4%ID/g; (125)I, 16.9%±2.8%ID/g at 144 h). CONCLUSION: NHS-[(131)I]IB-D-EEEG warrants further evaluation as a residualizing radioiodination agent for labeling internalizing antibodies/fragments, particularly for applications where excessive renal accumulation could be problematic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The oral cavity is an ideal environment for colonisation by micro-organisms. A first line of defence against microbial infection is the secretion of broad spectrum host defence peptides (HDPs). In the current climate of antibiotic resistance, exploiting naturally occurring HDPs or synthetic derivatives (mimetics) to combat infection is particularly appealing. The human cathelicidin, LL-37 is one such HDP expressed ubiquitously by epithelial cells and neutrophils. LL-37 exhibits the ability to bind lipopolysaccharide (LPS) and displays broad spectrum activity against a wide range of bacteria. The current study focuses on truncation of LL-37 and defining the antimicrobial and LPS binding activity of the resultant mimetics. Objectives: To assess the antimicrobial and LPS binding activity of LL-37 and three truncated mimetics (KE-18, EF-14 and KR-12). Methods: Peptides were synthesised in-house by Fmoc solid phase peptide synthesis or obtained commercially. Antimicrobial activity was determined using a radial diffusion assay and ability to bind LPS was determined by indirect ELISA. Results: LL-37 and mimetics displayed antimicrobial activity against Streptococcus mutans and Enterococcus Faecalis. KE-18 and KR-12 were shown to possess antimicrobial activity against both pathogens whereas EF-14 was the least antimicrobial. In terms of LPS binding, KE-18 and KR-12 were both effective whereas EF-14 showed the least activity of the three mimetics. Conclusion: Truncation of LL-37 can yield peptides which retain antimicrobial activities and have the ability to bind LPS. Interestingly in some cases the truncation of LL-37 produced mimetics with greater potency than the parent molecule in terms of antimicrobial activity and LPS binding. This work was funded by DEL and the Diabetes Wellness Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present PhD thesis we studied the solid-phase peptide synthesis of antimicrobial peptides derived from the lead peptides BP100 and BPC194. First, peptides derived from BP100 containing D-amino acids at different positions of the sequences were prepared. Moreover, peptidotriazoles derived from BP100 were also synthesized containing the triazole ring at the side-chain of different amino acids. Then, we proceeded to perform studies for the synthesis of multivalent peptides derived from BPC194. To achieve this objective, the synthesis of cyclic peptides containig a triazole ring at amino acids side-chain with different elongations was carried out. Finally, we prepared various carbopeptides containing 2 and 4 units of BP100 and/or its derivatives. The evaluation of the biological activity allowed the identification of active sequences against the economically important phytopathogenic bacteria and fungi and not toxic against eukaryotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong selfassembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition−fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide− alkyne cycloaddition (CuAAC) to generate the desired peptide− polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16−20) (KLVFF). The influence of attaching short poly(Nisopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.