915 resultados para Solid-extracellular fluid interaction
Resumo:
Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.
Resumo:
Acknowledgment The first two authors wish to express their sincerest thanks to Iran National Science Foundation (INSF) for supporting this work under Contract Number 92021291.
Resumo:
In pre-surgery decisions in hospital emergency cases, fast and reliable results of the solid and fluid mechanics problems are of great interest to clinicians. In the current investigation, an iterative process based on a pressure-type boundary condition is proposed in order to reduce the computational costs of blood flow simulations in arteries, without losing control of the important clinical parameters. The incorporation of cardiovascular autoregulation, together with the well-known impedance boundary condition, forms the basis of the proposed methodology. With autoregulation, the instabilities associated with conventional pressure-type or impedance boundary conditions are avoided without an excessive increase in computational costs. The general behaviour of pulsatile blood flow in arteries, which is important from the clinical point of view, is well reproduced through this new methodology. In addition, the interaction between the blood and the arterial walls occurs via a modified weak coupling, which makes the simulation more stable and computationally efficient. Based on in vitro experiments, the hyperelastic behaviour of the wall is characterised and modelled. The applications and benefits of the proposed pressure-type boundary condition are shown in a model of an idealised aortic arch with and without an ascending aorta dissection, which is a common cardiovascular disorder.
Resumo:
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.
Resumo:
In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
The motion of DNA (in the bulk solution) and the non-Newtonian effective fluid behavior are considered separately and self-consistently with the fluid motion satisfying the no-slip boundary condition on the surface of the confining geometry in the presence of channel pressure gradients. A different approach has been developed to model DNA in the micro-channel. In this study the DNA is assumed as an elastic chain with its characteristic Young's modulus, Poisson's ratio and density. The force which results from the fluid dynamic pressure, viscous forces and electromotive forces is applied to the elastic chain in a coupled manner. The velocity fields in the micro-channel are influenced by the transport properties. Simulations are carried out for the DNAs attached to the micro-fluidic wall. Numerical solutions based on a coupled multiphysics finite element scheme are presented. The modeling scheme is derived based on mass conservation including biomolecular mass, momentum balance including stress due to Coulomb force field and DNA-fluid interaction, and charge transport associated to DNA and other ionic complexes in the fluid. Variation in the velocity field for the non-Newtonian flow and the deformation of the DNA strand which results from the fluid-structure interaction are first studied considering a single DNA strand. Motion of the effective center of mass is analyzed considering various straight and coil geometries. Effects of DNA statistical parameters (geometry and spatial distribution of DNAs along the channel) on the effective flow behavior are analyzed. In particular, the dynamics of different DNA physical properties such as radius of gyration, end-to-end length etc. which are obtained from various different models (Kratky-Porod, Gaussian bead-spring etc.) are correlated to the nature of interaction and physical properties under the same background fluid environment.
Resumo:
In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling). In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature.The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990), it has been assumed that the fluidised gas-particle medium is isothermal.The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990). Their assumption that the system is isothermal also appears to be valid.
Resumo:
This paper studies the X-ray spectra produced by the interaction of highly charged ions of Arq+ (q = 16, 17, 18) with metallic surface of Be, Al, Ni, Mo and Au respectively. The experimental results show that the K alpha X-ray emerges from under the surface of solid in the interaction of ions with targets. The multi-electron excitation occurred in the process neutralization of the Ar16+ in electronic configuration of 1s(2) in metallic surfaces, which produces vacancy in the K shell. Electron from high n state transition to K vacancy gives off X-ray. We find that there is no obvious relation between the shape of X-ray spectra and the different targets. The X-ray yield of incident ions are associated with initial electronic configuration. The X-ray yield of target is related to the kinetic energy of the incident ions.
Resumo:
OBJECTIVE: To determine fluid retention, glomerular filtration rate, and urine output in dogs anesthetized for a surgical orthopedic procedure. ANIMALS: 23 dogs treated with a tibial plateau leveling osteotomy. PROCEDURES: 12 dogs were used as a control group. Cardiac output was measured in 5 dogs, and 6 dogs received carprofen for at least 14 days. Dogs received oxymorphone, atropine, propofol, and isoflurane for anesthesia (duration, 4 hours). Urine and blood samples were obtained for analysis every 30 minutes. Lactated Ringer's solution was administered at 10 mL/kg/h. Urine output was measured and glomerular filtration rate was estimated. Fluid retention was measured by use of body weight, fluid balance, and bioimpedance spectroscopy. RESULTS: No difference was found among control, cardiac output, or carprofen groups, so data were combined. Median urine output and glomerular filtration rate were 0.46 mL/kg/h and 1.84 mL/kg/min. Dogs retained a large amount of fluids during anesthesia, as indicated by increased body weight, positive fluid balance, increased total body water volume, and increased extracellular fluid volume. The PCV, total protein concentration, and esophageal temperature decreased in a linear manner. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs anesthetized for a tibial plateau leveling osteotomy retained a large amount of fluids, had low urinary output, and had decreased PCV, total protein concentration, and esophageal temperature. Evaluation of urine output alone in anesthetized dogs may not be an adequate indicator of fluid balance.
Resumo:
The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake zone are variably graphitic pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached near the unconformity during paleoweathering and/or later fluid interaction, leading to a loss of graphite near the unconformity. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman analysis, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, N2- and CO2-rich fluids circulated. CH4- and N2-rich fluids could be the result of the breakdown of graphite to CH4/CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4+/N2. In the RGZ, highly saline fluids interpreted to be basinally derived have been recorded. The circulation of the two types of fluids (carbonic and brines) occurred at two different distinct events: 1) during the retrograde metamorphism of the basement rocks before the deposition of the Athabasca Basin for the carbonic fluids, and 2) after the deposition of the Athabasca Basin for the brines. Thus, in addition to possibly be related to graphite depletion in the RGZ, the brines can be linked to uranium mineralization.
Resumo:
La presente Tesis Doctoral tiene como objetivo el estudio de flujo turbulento cargado con partículas sólidas a través de canales y tuberías de sección constante usando un enfoque Euleriano-Lagrangiano. El campo de flujo de la fase de transporte (aire) se resuelve usando simulación de grandes escalas (LES), implementada en un programa de volúmenes finitos mientras que las ecuaciones gobernantes de la fase dispersa son resueltas por medio de un algoritmo de seguimiento Lagrangiano de partículas que ha sido desarrollado y acoplado al programa que resuelve el flujo. Se estudia de manera sistemática y progresiva la interacción fluido→partícula (one-way coupling), a través de diferentes configuraciones geométricas en coordenadas cartesianas (canales de sección constante y variable) y en coordenadas cilíndricas (tuberías de sección constante y sección variable) abarcando diferentes números de Reynolds y diferentes tamaños de partículas; todos los resultados obtenidos han sido comparados con datos publicados previamente. El estudio de flujo multifásico a través de, tuberías de sección variable, ha sido abordada en otras investigaciones mayoritariamente de forma experimental o mediante simulación usando modelos de turbulencia menos complejos y no mediante LES. El patrón de flujo que se verifica en una tubería con expansión es muy complejo y dicha configuración geométrica se halla en múltiples aplicaciones industriales que involucran el transporte de partículas sólidas, por ello es de gran interés su estudio. Como hecho innovador, en esta tesis no solo se resuelven las estadísticas de velocidad del fluido y las partículas en tuberías con diferentes tamaños de expansión y diferentes regímenes de flujo sino que se caracteriza, usando diversas formulaciones del número de Stokes y el parámetro de arrastre, el ingreso y acumulación de partículas dentro de la zona de recirculación, obteniéndose resultados coincidentes con datos experimentales. ABSTRACT The objective of this Thesis research is to study the turbulent flow laden with solid particles through channels and pipes with using Eulerian-Lagrangian approach. The flow field of the transport phase (air ) is solved using large eddy simulation ( LES ) implemented in a program of finite volume while the governing equations of the dispersed phase are resolved by means of a particle Lagrangian tracking algorithm which was developed and coupled to principal program flow solver . We studied systematically and progressively the fluid interaction → particle ( one- way coupling ) , through different geometric configurations in Cartesian coordinates ( channel with constant and variable section) and in cylindrical coordinates ( pipes with constant section and variable section ) covering different Reynolds numbers and different particle sizes, all results have been compared with previously published data . The study of multiphase flow through, pipes with variable section has been addressed in other investigations predominantly experimentally or by simulation using less complex models and no turbulence by LES. The flow pattern is verified in a pipe expansion is very complex and this geometry is found in many industrial applications involving the transport of solid particles, so it is of great interest to study. As an innovator fact , in this Thesis not only finds fluid velocity statistics and particles with different sizes of pipe expansion and different flow regimes but characterized, using various formulations of the Stokes number and the drag parameter are resolved, the entry and accumulation of particles within the recirculation zone , matching results obtained with experimental data.
Resumo:
ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose.
Resumo:
The progression of animal life from the paleozoic ocean to rivers and diverse econiches on the planet's surface, as well as the subsequent reinvasion of the ocean, involved many different stresses on ionic pattern, osmotic pressure, and volume of the extracellular fluid bathing body cells. The relatively constant ionic pattern of vertebrates reflects a genetic "set" of many regulatory mechanisms--particularly renal regulation. Renal regulation of ionic pattern when loss of fluid from the body is disproportionate relative to the extracellular fluid composition (e.g., gastric juice with vomiting and pancreatic secretion with diarrhea) makes manifest that a mechanism to produce a biologically relatively inactive extracellular anion HCO3- exists, whereas no comparable mechanism to produce a biologically inactive cation has evolved. Life in the ocean, which has three times the sodium concentration of extracellular fluid, involves quite different osmoregulatory stress to that in freshwater. Terrestrial life involves risk of desiccation and, in large areas of the planet, salt deficiency. Mechanisms integrated in the hypothalamus (the evolutionary ancient midbrain) control water retention and facilitate excretion of sodium, and also control the secretion of renin by the kidney. Over and above the multifactorial processes of excretion, hypothalamic sensors reacting to sodium concentration, as well as circumventricular organs sensors reacting to osmotic pressure and angiotensin II, subserve genesis of sodium hunger and thirst. These behaviors spectacularly augment the adaptive capacities of animals. Instinct (genotypic memory) and learning (phenotypic memory) are melded to give specific behavior apt to the metabolic status of the animal. The sensations, compelling emotions, and intentions generated by these vegetative systems focus the issue of the phylogenetic emergence of consciousness and whether primal awareness initially came from the interoreceptors and vegetative systems rather than the distance receptors.