939 resultados para Sole carbon source


Relevância:

100.00% 100.00%

Publicador:

Resumo:

QUESTOR, DuPont , ICI and EC Framework 4 collaboration (Groningen, Cardiff, Dresden) – Belfast PI Larkin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new bacterial strain, was isolated from petroleum contaminated soil, identified and named Pseudomonas aeruginosa strain LBI. The new strain produced surface-active rhamnolipids by batch cultivation in a mineral salts medium with soapstock as the sole carbon source. Biosurfactant production increased after nitrogen depletion. The maximum rhamnolipid concentration, 15.9 g/l, was reached when it was incubated in a bioreactor with a constant K(L)a of 169.9 h(-1). (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis,' a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA. A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96% of Bacteria) from this bioreactor, while post-fluorescence in situ hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly-beta-hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to Defluvicoccus vanus (16% of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of enhanced biological phosphorus removal (ESPR) systems is directly affected by the competition of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigated the short-term effects of carbon source on PAO and GAO performance. The tests were designed to clearly determine the impact of volatile fatty acid (VFA) composition on the performance of two types of biomass, one enriched for PAOs and the other for GAOs. The two populations were enriched in separate reactors using identical operating conditions and very similar influent compositions with acetate as the sole carbon source. The only difference was that a very tow level of phosphorus was present in the influent to the GAO reactor. The abundance of PAOs and GAOs was quantified using fluorescence in-situ hybridisation. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to utilise different carbon substrates. While both are able to take up acetate rapidly and completely, the GAOs are far slower at consuming propionate than the PAOs during short-term substrate changes. This provides a potentially highly valuable avenue to influence the competition between PAOs and GAOs. Other VFAs studied seem to be less usable in the short term by both PAOs and GAOs; as indicated by their much lower uptake rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes (MWCNTs) were efficiently synthesized by catalytic combustion of polypropylene (PP) using nickel compounds (such as Ni2O3, NiO, Ni(OH)(2) and NiCO3 (.) 2Ni(OH)(2)) as catalysts in the presence of organic-modified montmorillonite (OMMT) at 630-830 degrees C. Morphologies of the sample undergoing different combustion times were observed to investigate actual process producing MWCNTs by this method. The obtained MWCNTs were characterized by X-ray diffraction (XRD), transmission electron microscope and Raman spectroscopy. The yield of MWCNTs was affected by the composition of PP mixtures with OMMT and nickel compounds and the combustion temperature. The proton acidic sites from the degraded OMMT layers due to the Hoffman reaction of the modifiers at high temperature played an important role in the catalytic degradation of PP to supply carbon sources that are easy to be catalyzed by nickel catalyst for the growth of MWCNTs. The XRD measurements demonstrated that the nickel compounds were in situ reduced into the Ni(0) state with the aid of hydrogen gas and/or hydrocarbons in the degradation products of PP, and the Ni(O) was really the active site for the growth of MWCNTs. The combination of nickel compounds with OMMT was a key factor to efficiently synthesize MWCNTs via catalytic combustion of PP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30A degrees C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237 +/- 0.026 g g(-1) cell dry weight and 0.272 +/- 0.041 g L-1 when glucose was used as the carbon source, whereas the lipid content reached 0.287 +/- 0.018 g g(-1) cell dry weight and 0.288 +/- 0.008 g L-1 when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L-1 gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic carbon (OC), total nitrogen (TN), and Pb-210 in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the past one hundred years in Jiaozhou Bay, North China. The core sediment was dated using Pb-210 chronology, which is the most promising method for estimation of sedimentation rate on a time scale of 100-150 years. The variation of the burial flux of organic carbon in the past one hundred years can be divided into the following three stages: (1) relatively steady before 1980s; (2) increasing rapidly from the 1980s to a peak in the 1990s, and (3) decreasing from the 1990s to the present. The change is consistent with the amount of solid waste and sewage emptied into the bay. The OC:TN ratio was used to evaluate the source of organic carbon in the Jiaozhou Bay sediment. In the inner bay and bay mouth, the organic carbon was the main contributor from terrestrial sources, whereas only about half of organic carbon was contributed from terrestrial source in the outer bay. In the inner bay, the terrestrial source of organic carbon showed a steady change with an increase in the range of 69%-77% before 1990 to 93% in 2000, and then decreased from 2000 because of the decrease in the terrestrial input. In the bay mouth, the percentage of organic carbon from land reached the highest value with 94% in 1994. In the outer bay, the sediment source maintained steady for the past one hundred years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal phenotype.