860 resultados para Solar tracker. Solar energy. Position control. Structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of solar energy for electricity generation has shown a growing interest in recent years. Generally, the conversion of solar energy into electricity is made by PV modules installed on fixed structures, with slope determined by the latitude of the installation site. In this sense, the use of mobile structures with solar tracking, has enabled increased production of the generated energy. However, the performance of these structures depends on the type of tracker and the position control used. In this work, it is proposed position control a strategy applied for a solar tracker, which will be installed in Laboratory of Power Electronics and Renewable Energy (LEPER), located in the Federal University of Rio Grande do Norte (UFRN). The tracker system is of polar type with daily positioning east-west and tilt angle manual adjustment in the seasonal periods, from north to south

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of three solar and daylighting control systems based on Calumen II, Ecotect and Radiance simulation programs to obtain an energy efficient and healthy interior in the experimental building prototype SDE10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured tungsten trioxide (WO3) photoelectrodes are potential candidates for the anodic portion of an integrated solar water-splitting device that generates hydrogen fuel and oxygen from water. These nanostructured materials can potentially offer improved performance in photooxidation reactions compared to unstructured materials because of enhancements in light scattering, increases in surface area, and their decoupling of the directions of light absorption and carrier collection. To evaluate the presence of these effects and their contributions toward energy conversion efficiency, a variety of nanostructured WO3 photoanodes were synthesized by electrodeposition within nanoporous templates and by anodization of tungsten foils. A robust fabrication process was developed for the creation of oriented WO3 nanorod arrays, which allows for control nanorod diameter and length. Films of nanostructured WO3 platelets were grown via anodization, the morphology of the films was controlled by the anodization conditions, and the current-voltage performance and spectral response properties of these films were studied. The observed photocurrents were consistent with the apparent morphologies of the nanostructured arrays. Measurements of electrochemically active surface area and other physical characteristics were correlated with observed differences in absorbance, external quantum yield, and photocurrent density for the anodized arrays. The capability to quantify these characteristics and relate them to photoanode performance metrics can allow for selection of appropriate structural parameters when designing photoanodes for solar energy conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount of solar energy made available for the production of a sabid seed varied as a function of the time of the year, the face of the plant in which, the position in the plant on which and the position in the pod in which it was produced.Variation in solar energy availability as a consequence of the time of the year was a direct consequence of latitude. At 21degrees5'22 S the highest amounts of Global Solar Radiation (GSR) reaching the site where the experiment was conducted took place during the months from November through February. During these months there were no marked differences between any two of the amounts of GSR reaching faces North (N), South (S), West (W) East (E). From February through November (period during which the sabid plants of this study flowered and the resulting seeds matured and were harvested) the total GSR's were the lowest and marked differences were found between faces N and S, with face N receiving much more GSR than face S. During that period, faces W and E received practically the same amount of GSR and it was much less than that received by face N and much more than the one received by face S.The amount of biological energy made available for the development of a seed seemed also to vary according to a dry matter partitioning strategy by the plant -the central third of the plant seemed to be the one receiving the highest amounts of energy, followed either by the upper or the lower third of the plant- it was not very clear which third of the plant immediately followed the central one. The partitioning of biological energy at the pod level also seemed to follow a strategy by which the central seeds would be the ones to receive more, followed by the proximal seeds and these by the distal ones.This availability of energy seemed to have a direct effect on seed size, weight and on the percentage of seeds which showed a degree of dormancy deep enough to prevent their germinating under the conditions of a standard germination test.The implications of these results for the improvement of methods for the overcoming of dormancy of sabia seeds are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial aluminium foam filled structures and sandwich panels are available for structural applications. As alternative to these materials, small granular foamed pieces are proposed to fill structures as well as sandwich panels. On the present work, foam precursors are obtained by Powder Metallurgy (PM) route, using natural calcium carbonate as foaming agent instead of titanium hydride. Extruded precursor bars were cut into small pieces (around 4.5 mm long and 5mm in diameter). Foaming treatment was carried out on two different ways: electrical preheated furnace and by solar furnace. Foamed nodules presented a low cell size, density e.g. 0.67 g/cm3 to 0.88 g/cm3 and a height/diameter ratio between 0.72 and 0.84 as a function of precursor size. These properties depend on the foaming particle size, foaming cycle and precursor dimensions. Carbonate precursors are easily foamed by concentrated solar energy, due to the lower risk of cell collapse than with hydride precursors, resulting from cell stabilization by oxide skin formation into cells and a low degree of foamed nodules bonding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the power management issues in a mobile solar energy storage system. A multi-converter based energy storage system is proposed, in which solar power is the primary source while the grid or the diesel generator is selected as the secondary source. The existence of the secondary source facilitates the battery state of charge detection by providing a constant battery charging current. Converter modeling, multi-converter control system design, digital implementation and experimental verification are introduced and discussed in details. The prototype experiment indicates that the converter system can provide a constant charging current during solar converter maximum power tracking operation, especially during large solar power output variation, which proves the feasibility of the proposed design. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the face of increasing concern over global warming and climate change, interest in the utilizzation of solar energy for building operations is rapidly growing. In this entry, the importance of using renewable energy in building operations is first introduced. This is followed by a general overview on the energy from the sun and the methods to utilize solar energy. Possible applications of solar energy in building operations are then discussed, which include the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling, and building-integrated photovoltaics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green energy is one of the key factors, driving down electricity bill and zero carbon emission generating electricity to green building. However, the climate change and environmental policies are accelerating people to use renewable energy instead of coal-fired (convention type) energy for green building that energy is not environmental friendly. Therefore, solar energy is one of the clean energy solving environmental impact and paying less in electricity fee. The method of solar energy is collecting sun from solar array and saves in battery from which provides necessary electricity to whole house with zero carbon emission. However, in the market a lot of solar arrays suppliers, the aims of this paper attempted to use superiority and inferiority multi-criteria ranking (SIR) method with 13 constraints establishing I-flows and S-flows matrices to evaluate four alternatives solar energies and determining which alternative is the best, providing power to sustainable building. Furthermore, SIR is well-known structured approach of multi-criteria decision support tools and gradually used in construction and building. The outcome of this paper significantly gives an indication to user selecting solar energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In face of the increasing concern on global warming and climate change, the interests in the utilization of solar energy for building operation are also rapidly growing. In this paper, the importance of using renewable energy in building operations is first discussed. The potential use of solar energy is then reviewed. Possible applications of solar energy in building operation are also discussed, including the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling and building-integrated photovoltaics. Finally, the research activities in the utilization of solar energy for space cooling at QUT are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of Squamous Cell Carcinoma (SCG) is growing in certain populations to the extent that it is now the most common skin lesion in young men and women in high ultraviolet exposure regions such as Queensland. In terms of incidence up to 40% of the Australian population over 40 years of age is thought to possess the precancerous Solar Keratosis (SK) lesion and with a small, but significant, chance of progression into SCC, understanding the genetic events that play a role in this process is essential. The major aims of this study were to analyse whole blood derived samples for DNA aberrations in genes associated with tumour development and cellular maintenance, with the ultimate aim of identifying genes associated with non-melanoma skin cancer development. More specifically the first aim of this project was to analyse the SDHD and MMP12 genes via Dual-Labelled Probe Real-Time PCR for copy number aberrations in an affected Solar Keratosis and control cohort. It was found that 12 samples had identifiable copy-number aberrations in either the SDHD or MMP12 gene (this means that a genetic section of either of these two genes is aberrantly amplified or deleted), with five of the samples exhibiting aberrations in both genes. The significance of this study is the contribution to the knowledge of the genetic pathways that are malformed in the progression and development of the pre-cancerous skin lesion Solar Keratosis. © 2008 Springer Science+Business Media, LLC.