964 resultados para Solar collector
Resumo:
Solar cooling systems are gaining popularity due to continuously increasing of energy costs around the world. However, there are still some factors that are hindering the installation of solar cooling systems on a larger scale. One being the cost associated with the solar collectors required to provide heat to the absorption chiller. This study demonstrates the possibility of reducing the number of solar panels in a residential solar cooling system based on evacuated tubes producing hot water at a low temperature (90 °C) and a water-ammonia absorption chiller.
Resumo:
A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis, the performance and characteristics of the designed solar collector have been estimated. Furthermore, the prototypes of the proposed system were built and tested at a state-of-the-art solar simulator facility to evaluate the actual performance of the developed solar collector. The cost-effective polymer-CNT solar collector, which achieved efficiency as much as that of a conventional glazed flat plate solar panel, has been successfully developed.
Resumo:
A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.
Resumo:
This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.
Resumo:
The memebers of IEA (International Energy Agency) Task 14 (Advaced Active Solar Systems) met in Rome during January 1993. The latest developments in several countries were presented and discussed during this meeting. This report describes briefly the recent work carried out on small scale systems in the Domestic Hot Water (DHW) working group of Task 14, as reported by the representatives from Canada, Denmark, Germany, Holland and Switzerland. Klaus Lorenz, SERC, attended the meeting as observer and presented our work on small-tube heat exchangers. Several participants expressed their interest. A summary of his presentation is included in this report.
Resumo:
The need for renewable energy sources, facing the consequences of Climate Change, results in growing investment for solar collectors’ use. Research in this field has accompanied this expansion and evacuated tube solar collector stands as an important study focus. Thus, several works have been published for representing the stratification of the fluid inside the tubes and the reservoir, as well as analytical modeling for the heat flow problem. Based on recent publications, this paper proposes the study of solar water heating with evacuated tubes, their operation characteristics and operating parameters. To develop this work, a computational tool will be used - in this case, the application of computational fluid dynamics (CFD) software. In possession of the implemented model, a numerical simulation will be performed to evaluate the behavior of the fluid within this solar collector and possible improvements to be applied in the model.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
"January 1981."
Resumo:
Tesi hau Solarus AB enpresaren konzentratzailedun eguzki kolektore fotovoltaiko termikoei (C-PVT) buruz doa eta bi helburu nagusi ditu. Lehena Solarus-eko oraingo diseinuaren alderaketak diseinatzea da, MaReCo (Maximum Reflector Collector) diseinuaren eta parabola puruaren alderaketa batzuekin batera. Diseinu hauetan eguzki zelulen ebaketa berriak daude barruan eta 4 busbar-eko eguzki zeluletan oinarritua dago. Honi esker analisi sakon bat egin ahalko da hargailu eta estruktura diseinuak konparatuz. Bigarren helburua Solarus AB-k Gävleko unibertsitatean (HiG) kokaturik dituen kolektoreen errendimendu elektriko eta termikoa aztertzean datza. Datuak simulazio eta software espezifikoen bidez lortu dira eta ondoren Microsoft Excel®-en aztertu. Bi proiektu txikiagoak egin dira ere enpresan, bata eguzki kolektore fotovoltaiko termikoen merkatuaren ikerketan datza eta bestea eguzki kolektoreen produkzio prozesuaren gida batean. Hargailuen eta estrukturaren diseinu berriak preparatuta utzi dira prototipoen hurreneko eraikuntzarako eta proiektuarekin jarraitzeko etorkizuneko lan bat planeatu da. Unibertsitateko instalakuntzaren analisiari dagokionez, errendimendu elektriko eta termikoa estimatuena baino nabarmenki txikiagoak izan dira.
Resumo:
The text presented below analyses the variation of the performance of a parabolic trough solar collector, when some of the parameters that govern its operation vary due to dirty mirror, degradation etc. In order to reach that point, it will be seen how the human has made use of solar energy with different purposes, through history until it has been reached the point where solar technology has the widespread use and in such a variety of technologies as it has today. As in this project, the technology analysed is the solar collectors, it is going to make more emphasis on solar thermal technology. They will be explained in detail how the parabolic trough collectors are, analysing from its different components, to its thermal performance. Once acquainted with this technology, it will be seen which tests will be carried out. Finally it is going to be explained how the model, used for the simulation and implementation of the relevant tests, has been developed. It will also be explained how the model has been validated, for once validated, proceed to the sensitivity analysis of the collectors.
Resumo:
This paper describes large scale tests conducted on a novel unglazed solar air collector system. The proposed system, referred to as a back-pass solar collector (BPSC), has on-site installation and aesthetic advantages over conventional unglazed transpired solar collectors (UTSC) as it is fully integrated within a standard insulated wall panel. This paper presents the results obtained from monitoring a BPSC wall panel over one year. Measurements of temperature, wind velocity and solar irradiance were taken at multiple air mass flow rates. It is shown that the length of the collector cavities has a direct impact on the efficiency of the system. It is also shown that beyond a height-to-flow ratio of 0.023m/m<sup>3</sup>/hr/m<sup>2</sup>, no additional heat output is obtained by increasing the collector height for the experimental setup in this study, but these numbers would obviously be different if the experimental setup or test environment (e.g. location and climate) change. An equation for predicting the temperature rise of the BPSC is proposed.
Resumo:
The solar-assisted heat pump (SAHP) desalination, based on the Rankin cycle, operates in low temperature and utilizes both solar and ambient energy. An experimental SAHP desalination system has been constructed at the National University of Singapore, Singapore. The system consisted of two main sections: an SAHP and a water distillation section. Experiments were carried out under the different meteorological condition of Singapore and results showed that the system had a performance ratio close to 1.3. The heat pump has a coefficient of performance of about 8, with solar collector efficiencies of 80% and 60% for evaporator and liquid collectors, respectively. Economic analysis showed that at a production rate of 900 L/day and an evaporator collector area of around 70m2 will have a payback period of about 3.5 years.
Resumo:
Taking into consideration of growing energy needs and concern for environmental degradation, clean and inexhaustible energy source, such as solar energy, is receiving greater attention for various applications. The use of solar energy system reduces pollution, waste and has little or no harmful effects on the environment. It is appreciated that this source of energy can be complementary rather than being competitive to conventional energy sources. In order to collect and harness energy from the sun, a solar collector is essential. A solar collector is basically a heat exchanger that transforms solar radiant energy into heat or thermal energy. Improvement of performance is essential for commercial acceptance of their use in such applications. Many studies have been undertaken on the enhancement of thermal performance of solar collectors, using diverse materials of various shapes, dimensions and layouts. In the literature, various collector designs have been proposed and tested with the objective of meeting these requirements [1-8]. Omer et al. [1] found the efficiency of a solar collector of about 70% in a solar assisted heat pump system. Traditional solar collectors are single phase collectors, in which the working fluid is either air or water. Different modifications are suggested and applied to improve the heat transfer between the absorber and working fluid in a collector. These modifications include the use of absorber with fins attached [2,3], corrugated absorber [4,5], matrix type absorber [6], V-groove solar air collector [7]. Karim et al. [8] approached a review of design and construction of three types (flat, vee-grooved, and finned) of air collectors. Two-phase collectors, on the other hand, have significant potential for continuous operation round the clock, when used in conjunction with a compressor, as found in a solar assisted heat-pump cycle.