995 resultados para Solar array simulators


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a careful evaluation among the most usual MPPT (Maximum Power Point Tracking) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors. Firstly, the MPPT and boost converter models were implemented via MatLab/Simulink®, and after a DC to DC boost converter, digitally controlled, was implemented and connected to an Agilent Solar Array simulator, in order to validate the simulation results. The algorithms are digitally developed and the main experimental results are also presented from the implemented prototype. Furthermore, the experimental dynamic results and the computed tracking factors are presented. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors, considering that the models are first implemented via MatLab/Simulink®, and after a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array simulator in order to verify the simulation results. The prototype was built, the algorithms are digitally developed and the main experimental results are also presented, including dynamic responses and the experimental tracking factor (TF) for the analyzed MPPT techniques. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Green energy is one of the key factors, driving down electricity bill and zero carbon emission generating electricity to green building. However, the climate change and environmental policies are accelerating people to use renewable energy instead of coal-fired (convention type) energy for green building that energy is not environmental friendly. Therefore, solar energy is one of the clean energy solving environmental impact and paying less in electricity fee. The method of solar energy is collecting sun from solar array and saves in battery from which provides necessary electricity to whole house with zero carbon emission. However, in the market a lot of solar arrays suppliers, the aims of this paper attempted to use superiority and inferiority multi-criteria ranking (SIR) method with 13 constraints establishing I-flows and S-flows matrices to evaluate four alternatives solar energies and determining which alternative is the best, providing power to sustainable building. Furthermore, SIR is well-known structured approach of multi-criteria decision support tools and gradually used in construction and building. The outcome of this paper significantly gives an indication to user selecting solar energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The University of Queensland UltraCommuter project is the demonstration of an ultra-light weight, low drag, energy efficient and low polluting, electric commuter vehicle equipped with a 2.5m2 on-board solar array. A key goal of the project is to make the vehicle predominantly self-sufficient from solar power for normal driving purposes , so that it does not require charging or refuelling from off-board sources. This paper examines the technical feasibility of the solar-powered commuter vehicle concept, as it applies the UltraCommuter project. A parametric description of a solar-powered commuter vehicle is presented. Real solar insolation data is then used to predict the solar driving range for the UltraCommuter and this is compared to typical urban usage patterns for commuter vehicles in Queensland. A comparative analysis of annual greenhouse gas emissions from the vehicle is also presented. The results show that the UltraCommuter’s on-board solar array can provide substantial supplementation of the energy required for normal driving, powering 90% of annual travel needs for an average QLD passenger vehicle. The vehicle also has excellent potential to reduce annual greenhouse gas emissions from the private transport sector, achieving a 98% reduction in CO2 emissions when compared to the average QLD passenger vehicle. Lastly, the vehicle battery pack provides for tolerance to consecutive days of poor weather without resorting to grid charging, giving uninterrupted functionality to the user. These results hold great promise for the technical feasibility of the solar-powered commuter vehicle concept.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rotation of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermally driven liquid-desiccant air-conditioners (LDAC) are a proven but still developing technology. LDACs can use a solar thermal system to reduce the operational cost and environmental impact of the system by reducing the amount of fuel (e.g. natural gas, propane, etc.) used to drive the system. LDACs also have a key benefit of being able to store energy in the form of concentrated desiccant storage. TRNSYS simulations were used to evaluate several different methods of improving the thermal and electrical coefficients of performance (COPt and COPe) and the solar fraction (SF) of a LDAC. The study analyzed a typical June to August cooling season in Toronto, Ontario. Utilizing properly sized, high-efficiency pumps increased the COPe to 3.67, an improvement of 55%. A new design, featuring a heat recovery ventilator on the scavenging-airstream and an energy recovery ventilator on the process-airstream, increased the COPt to 0.58, an improvement of 32%. This also improved the SF slightly to 54%, an increase of 8%. A new TRNSYS TYPE was created to model a stratified desiccant storage tank. Different volumes of desiccant were tested with a range of solar array system sizes. The largest storage tank coupled with the largest solar thermal array showed improvements of 64% in SF, increasing the value to 82%. The COPe was also improved by 17% and the COPt by 9%. When combining the heat recovery systems and the desiccant storage systems, the simulation results showed a 78% increase in COPe and 30% increase in COPt. A 77% improvement in SF and a 17% increase in total cooling rate were also predicted by the simulation. The total thermal energy consumed was 10% lower and the electrical consumption was 34% lower. The amount of non-renewable energy needed from the natural gas boiler was 77% lower. Comparisons were also made between LDACs and vapour-compression (VC) systems. Dependent on set-up, LDACs provided higher latent cooling rates and reduced electrical power consumption. Negatively, a thermal input was required for the LDAC systems but not for the VC systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of a system that integrates reverse osmosis (RO) with a horticultural greenhouse has been advanced through laboratory experiments. In this concept, intended for the inland desalination of brackish groundwater in dry areas, the RO concentrate will be reduced in volume by passing it through the evaporative cooling pads of the greenhouse. The system will be powered by solar photovoltaics (PV). Using a solar array simulator, we have verified that the RO can operate with varying power input and recovery rates to meet the water demands for irrigation and cooling of a greenhouse in north-west India. Cooling requires ventilation by a fan which has also been built, tested and optimised with a PV module outdoors. Results from the experiments with these two subsystems (RO and fan) are compared to theoretical predictions to reach conclusions about energy usage, sizing and cost. For example, the optimal sizing for the RO system is 0.12–1.3 m2 of PV module per m2 of membrane, depending on feed salinity. For the fan, the PV module area equals that of the fan aperture. The fan consumes <30 J of electrical energy per m3 of air moved which is 3 times less than that of standard fans. The specific energy consumption of the RO, at 1–2.3 kWh ?m-3, is comparable to that reported by others. Now that the subsystems have been verifi ed, the next step will be to integrate and test the whole system in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermally driven liquid-desiccant air-conditioners (LDAC) are a proven but still developing technology. LDACs can use a solar thermal system to reduce the operational cost and environmental impact of the system by reducing the amount of fuel (e.g. natural gas, propane, etc.) used to drive the system. LDACs also have a key benefit of being able to store energy in the form of concentrated desiccant storage. TRNSYS simulations were used to evaluate several different methods of improving the thermal and electrical coefficients of performance (COPt and COPe) and the solar fraction (SF) of a LDAC. The study analyzed a typical June to August cooling season in Toronto, Ontario. Utilizing properly sized, high-efficiency pumps increased the COPe to 3.67, an improvement of 55%. A new design, featuring a heat recovery ventilator on the scavenging-airstream and an energy recovery ventilator on the process-airstream, increased the COPt to 0.58, an improvement of 32%. This also improved the SF slightly to 54%, an increase of 8%. A new TRNSYS TYPE was created to model a stratified desiccant storage tank. Different volumes of desiccant were tested with a range of solar array system sizes. The largest storage tank coupled with the largest solar thermal array showed improvements of 64% in SF, increasing the value to 82%. The COPe was also improved by 17% and the COPt by 9%. When combining the heat recovery systems and the desiccant storage systems, the simulation results showed a 78% increase in COPe and 30% increase in COPt. A 77% improvement in SF and a 17% increase in total cooling rate were also predicted by the simulation. The total thermal energy consumed was 10% lower and the electrical consumption was 34% lower. The amount of non-renewable energy needed from the natural gas boiler was 77% lower. Comparisons were also made between LDACs and vapour-compression (VC) systems. Dependent on set-up, LDACs provided higher latent cooling rates and reduced electrical power consumption. Negatively, a thermal input was required for the LDAC systems but not for the VC systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimization of a photovoltaic pumping system based on an induction motor driven pump that is powered by a solar array is presented in this paper. The motor-pump subsystem is analyzed from the point of view of optimizing the power requirement of the induction motor, which has led to an optimum u-f relationship useful in controlling the motor. The complete pumping system is implemented using a dc-dc converter, a three-phase inverter, and an induction motor-pump set. The dc-dc converter is used as a power conditioner and its duty cycle is controlled so as to match the load to the array. A microprocessor-based controller is used to carry out the load-matching.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rota-tion of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.