968 resultados para Solar and atmospheric neutrinos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We re-analyse the non-standard interaction (NSI) solutions to the solar neutrino problem in the light of the latest solar as well as atmospheric neutrino data. The latter require oscillations (OSC), while the former do not. Within such a three-neutrino framework the solar and atmospheric neutrino sectors are connected not only by the neutrino mixing angle theta(13) constrained by reactor and atmospheric data, but also by the flavour-changing (FC) and non-universal (NU) parameters accounting for the solar data. Since the NSI solution is energy-independent the spectrum is undistorted, so that the global analysis observables are the solar neutrino rates in all experiments as well as the Super-Kamiokande day-night measurements. We find that the NSI description of solar data is slightly better than that of the OSC solution and that the allowed NSI regions are determined mainly by the rate analysis. By using a few simplified ansatzes for the NSI interactions we explicitly demonstrate that the NSI values indicated by the solar data analysis are fully acceptable also for the atmospheric data. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the features of neutrino oscillation which are relevant for measurements of the leptonic CP violating phase δ and the sign of Delta;m13 2 in experiments with low-energy conventional superbeams. Toward the goal, we introduce a new powerful tool called the CP trajectory diagram in bi-probability space which allows us to represent pictorially the three effects, the effects of (a) genuine CP violation due to the sin δ term, (6) CP conserving cos δ term, and (c) fake CP violation due to earth matter, separately in a single diagram. By using the diagram, we observe that there is a two-fold ambiguity in the determination of S which is related with the sign of Delta;m13 2. Possible ways of resolving the ambiguity are discussed. In particular, we point out that an in situ simultaneous measurement of δ and the sign of Delta;m13 2 can be carried out at distances of about 700 km, or at the Phase II of the JHF experiment provided that sin δ ·Delta;m13 2 < 0, both with a megaton class water Cherenkov detector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the production of multileptons in the simplest supergravity model with bilinear violation of R parity at the Fermilab Tevatron. Despite the small .R-parity violating couplings needed to generate the neutrino masses indicated by current atmospheric neutrino data, the lightest supersymmetric particle is unstable and can decay inside the detector. This leads to a phenomenology quite distinct from that of the R-parity conserving scenario. We quantify by how much the supersymmetric multilepton signals differ from the R-parity conserving expectations, displaying our results in the m0 ⊙ m1/2 plane. We show that the presence of bilinear R-parity violating interactions enhances the supersymmetric multilepton signals over most of the parameter space, specially at moderate and large m0. © SISSA/ISAS 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been estimated that the entire Earth generates heat corresponding to about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to originate mainly from the radioactive decay of elements like U, Th and K, deposited in the crust and mantle of the Earth. Radioactivity of these elements produce not only heat but also antineutrinos (called geo-antineutrinos) which can be observed by terrestrial detectors. We investigate the possibility of discriminating among Earth composition models predicting different total radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at these places. By simulating the future geo-antineutrino data as well as reactor antineutrino background contributions, we try to establish to which extent we can discriminate among Earth composition models for given exposures (in units of kt · yr) at these two sites on our planet. We use also information on neutrino mixing parameters coming from solar neutrino data as well as KamLAND reactor antineutrino data, in order to estimate the number of geo-antineutrino induced events. © SISSA/ISAS 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that experimental data, coming from solar and atmospheric neutrino detectors and also from experiments which look for neutrino oscillations. strongly suggest that neutrinos must have a mass different from zero. However at least the solar and/or the atmospheric neutrino data can be related to new flavor changing interactions beyond the standard model instead to the finite mass of neutrinos. This new physics may induce i) extra effects in neutrino-matter interactions, ii) CP violation in pion and lepton decays and, iii) muonium to antimuonium transition. We give two examples of models in which all those effects arise even with strictly massless neutrinos: the 331 model and multi-Higgs doublet extension of the standard model (mHDM) with flavor changing neutral currents in the charged lepton sector. It means that in this kind of models if neutrino masses were eventually needed, they will be independent of the parameters of the new interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current nu(mu) and (nu) over bar (mu) interactions, and 701 contained-vertex showers, composed mainly of charged-current nu(e) and (nu) over bar (e) interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of nu(mu) and (nu) over bar (mu) events. The observed ratio of (nu) over bar (mu) to v(mu) events is compared with the Monte Carlo ( MC) simulation, giving a double ratio of R((nu) over bar/nu)data/R(nu) over bar/nu MC = 1.03 +/- 0.08(stat) +/- 0.08(syst). The v(mu) and (nu) over bar (mu) data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Delta m(2)| = (1.9 +/- 0.4) x 10(-3) eV(2) and sin(2)2 theta > 0.86. The fit is extended to incorporate separate nu(mu) and (nu) over bar mu oscillation parameters, returning 90% confidence limits of |Delta m(2)| - |Delta(m) over bar (2)| = 0.6(-0.8)(+2.4) x 10(-3) eV(2) on the difference between the squared-mass splittings for neutrinos and antineutrinos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an electroweak model based on the gauge symmetry SU(2)(L) circle times U(1)(Y') circle times U(1)(B-L) which has right-handed neutrinos with different exotic B - L quantum numbers. Because of this particular feature we are able to write Yukawa terms, and right-handed neutrino mass terms, with scalar fields that can develop vacuum expectation values belonging to different energy scales. We make a detailed study of the scalar and the Yukawa neutrino sectors to show that this model is compatible with the observed solar and atmospheric neutrino mass scales and the tribimaximal mixing matrix. We also show that there are dark matter candidates if a Z(2) symmetry is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the impact of recent experimental results on the determination of atmospheric neutrino oscillation parameters. We use all published results on atmospheric neutrinos, including the preliminary large statistics data of Super-Kamiokande. We reanalyze the data in terms of both vμ → vτ and vμ → ve channels using new improved calculations of the atmospheric neutrino flux. We compare the sensitivity attained in atmospheric neutrino experiments with those of accelerator and reactor neutrino oscillation searches, including the recent CHOOZ experiment. We briefly comment on the implications of atmospheric neutrino data in relation to future searches for neutrino oscillations with long baselines, such as the K2K, MINOS, ICARUS, and NOE experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reanalysed the atmospheric neutrino data including new results from Super-Kamiokande and Soudan-II experiments, under the assumption of two-flavor neutrino oscillation. We present the allowed region of oscillation parameters for the νμ → ντ channel. In performing this re-analysis we also take into account some recent theoretical improvements in the flux calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).