996 resultados para Solani Ag-8
Resumo:
The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. R ST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding. © 2013 The American Phytopathological Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fungi isolated in Brazil, from lettuce, broccoli, spinach, melon and tomato, were identified as Rhizoctonia solani. All lettuce isolates anastomosed with both AG 1-IA and IB subgroups and all isolates from broccoli, spinach, melon and tomato anastomosed with AG 4 subgroup HG-I, as well as with subgroups HG-II and HG-III. DNA sequence analyses of ribosomal internal transcribed spacers showed that isolates from lettuce were AG 1-IB, isolates from tomato and melon were AG 4 HG-I, and isolates from broccoli and spinach were AG 4 HG-III. The tomato isolates caused stem rot symptoms, the spinach, broccoli and melon isolates caused hypocotyl and root rot symptoms on the respective host plants and the lettuce isolates caused bottom rot. This is the first report on the occurrence in Brazil of R. solani AG 4 HG-I in tomato and melon, of AG 4 HG-III in broccoli and spinach and of AG 1-IB in lettuce.
Resumo:
Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P <= 0.001) were consistent with a relatively high level of differentiation among populations overall; however, pairwise comparisons gave nonsignificant R(ST) values, consistent with contemporary gene flow among five of the populations. Four of these populations were located along the Yangtze River tributary network. Gene flow followed an isolation-by-distance model consistent with restricted long-distance migration. Historical migration rates were reconstructed and yielded values that explained the current levels of population subdivision. Except for one population which appeared to be strictly clonal, all populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction. One population had a strictly recombining structure (all loci were in Hardy-Weinberg equilibrium) but the remaining populations from China and the one from India exhibited varying degrees of sexual reproduction. Six populations showed significant F(IS) values consistent with inbreeding.
Resumo:
The basidiomycetous fungus, Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen in Latin America causing sheath blight (SB) of rice Particularly in Venezuela. the fungus also Causes banded leaf and sheath blight (BLSB) oil maize, which is considered all emerging disease problem where maize replaced traditional rice-cropping areas or is now planted in adjacent. fields Our goals in this study Were 10 elucidate (i) the effects of host specialization on gene flow between sympatric and allopatric rice and maize-infecting fungal populations and (ii) the reproductive mode of the fungus, looking for evidence of recombination in total, 375 isolates of R. solani AG1 IA sampled from three sympatric rice and maize fields in Venezuela (Porutuguesa State) and two allopatric rice fields from Colombia (Meta State) and Panama (Chiriqui State) were genotyped Using, 10 microsatellite loci Allopatric populations from Venezuela. Colombia. and Panama were significantly differentiated (Phi(ST), of 0 16 to 0 34). Partitioning of the genetic diversity indicated differentiation between sympatric populations from different host species, with 17% of the total genetic variation distributed between hosts while only 3 to 6% wits distributed geographically among the sympatric Venezuelan Fields We detected symmetrical historical migration between the rice- and the maize-infecting populations from Venezuela Rice- and maize-derived isolates were able to infect built rice and maize but were more aggressive Oil their original hosts, consistent with host specialization. Because the maize- and rice-infecting populations are still cross-pathogenic, we postulate that the genetic differentiation was relatively recent and mediated via a host shift. An isolation with nu.-ration analysis indicated that the maize-infecting population diverged from the rice-infecting population between 40 and 240 years ago Our findings also suggest that maize-infecting Populations have a mainly recombining reproductive system whereas the rice-infecting Populations have a Mixed reproductive system in Latin America
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhao, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhao States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.
Resumo:
Background: the soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).Results: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi(ST) = 0.257, significant at P < 0.05) but not for locus pP42F (Phi(ST) = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3.Conclusion: the two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.
Resumo:
Anastomosis group 3 (AG-3) of Rhizoctonia solani (teleomorph = Thanatephorus cucumeris) is frequently associated with diseases of potato (AG-3 PT) and tobacco (AG-3 TB). Although isolates of R. solani AG-3 from these two Solanaceous hosts are somatically related based on anastomosis reaction and taxonomically related based on fatty acid, isozyme and DNA characters, considerable differences are evident in their biology, ecology, and epidemiology. However, genetic diversity among field populations of R. solani AG-3 PT and TB has not been documented. In this study, the genetic diversity of field populations of R. solani AG-3 PT and AG-3 TB in North Carolina was examined using somatic compatibility and amplified fragment length polymorphism (AFLP) criteria. A sample of 32 isolates from potato and 36 isolates from tobacco were paired in all possible combinations on PDA plus activated charcoal and examined for their resulting somatic interactions. Twenty-eight and eight distinct somatic compatibility groups (SCG) were identified in the AG-3 PT and AG-3 TB samples, respectively. AFLP analyses indicated that each of the 32 AG-3 PT isolates had a distinct AFLP phenotype, whereas 28 AFLP phenotypes were found among the 36 isolates of AG-3 TB. None of the AG-3 PT isolates were somatically compatible or shared a common AFLP phenotype with any AG-3 TB isolate. Clones (i.e., cases where two or more isolates were somatically compatible and shared the same AFLP phenotype) were identified only in the AG-3 TB population. Four clones from tobacco represented 22% of the total population. All eight SCG from tobacco were associated with more than one AFLP phenotype. Compatible somatic interactions between AG-3 PT isolates occurred only between certain isolates from the same field (two isolates in each of four different fields), and when this occurred AFLP phenotypes were similar but not identical.