952 resultados para Sol-gel transition
Resumo:
We report a theoretical formulation for the mean cluster size distribution in a finite polycondensing system. Expressions for the mean number of n-mers with j bonds ( nj) are developed. Numerical calculations show that while the non-cyclic molecules make the dominant contribution to the small clusters, the large clusters are dominated by cyclic structures. The number of particles in ringless chains, n n,n-1, decays monotonically with n at all extents of reaction, but n n becomes bimodal near the gel point. We also find that the solvent plays an important role in the cluster size distribution.
Resumo:
Surfactant-intercalated layered double-hydroxide solid Mg-Al LDH-dodecyl sulfate (DDS) undergoes rapid and facile delamination to its ultimate constituent, single sheets of nanometer thickness and micrometer size, in a nonpolar solvent such as toluene to form stable dispersions. The delaminated nanosheets are electrically neutral because the surfactant chains remain tethered to the inorganic layer even on exfoliation. With increasing volume fraction of the solid, the dispersion transforms from a free-flowing sol to a solidlike gel. Here we have investigated the sol-gel transition in dispersions of the hydrophobically modified Mg-Al LDH-DDS in toluene by rheology, SAXS, and (1)H NMR measurements. The rheo-SAXS measurements show that the sharp rise in the viscosity of the dispersion during gel formation is a consequence of a tactoidal microstructure formed by the stacking of the nanosheets with an intersheet separation of 3.92 nm. The origin and nature of the attractive forces that lead to the formation of the tactoidal structure were obtained from 1D and 2D (1)H NMR measurements that provided direct evidence of the association of the toluene solvent molecules with the terminal methyl of the tethered DDS surfactant chains. Gel formation is a consequence of the attractive dispersive interactions of toluene molecules with the tails of DDS chains anchored to opposing Mg-Al LDH sheets. The toluene solvent molecules function as molecular ``glue'' holding the nanosheets within the tactoidal microstructure together. Our study shows how rheology, SAXS, and NMR measurements complement each other to provide a molecular-level description of the sol-gel transition in dispersions of a hydrophobically modified layered double hydroxide.
Resumo:
The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed.
Resumo:
Physical gelation in the concentrated Pluronic F127/D2O solution has been studied by a combination of small-angle neutron scattering (SANS) and Monte Carlo simulation. A 15% F127/D2O solution exhibits a sol-gel transition at low temperature and a gel-sol transition at the higher temperature, as evidenced by SANS and Monte Carlo simulation studies. Our SANS and simulation results also suggest that the sol-gel transition is dominated by the formation of a percolated polymer network, while the gel-sol transition is determined by the loss of bound solvent. Furthermore, different diffusion behaviors of different bound solvents and free solvent are observed. We expect that this approach can be further extended to study phase behaviors of other systems with similar sol-gel phase diagrams.
Resumo:
The effect of concentration on the structure of SnO2 colloids in aqueous suspension, on their spatial correlation and on the gelation process was studied by small angle x-ray scattering (SAXS). The shape of the experimental SAXS curves varies with suspension concentration. For diluted suspensions ([SnO2] less than or equal to 0.13 mol L-1), SAXS results indicate the presence of colloidal fractal aggregates with an internal correlation length xi congruent to 20 Angstrom, without any noticeable spatial correlation between them. This suggests that the aggregates are spatially arranged without any significant interaction like in ideal gas structures. For higher concentrations ([SnO2] = 0.16, 0.32, and 0.64 mol L-1), the colloidal aggregates are larger (xi = 24 Angstrom) and exhibit a certain degree of spatial correlation between them. The pair correlation function corresponding to the sol with the highest concentration (0.92 mol L-1) reveals a rather strong short range order between aggregates, characteristic of a fluid-like structure, with an average nearest-neighbor distance between aggregates d(1) = 125 Angstrom and an average second-neighbor distance d(2) = 283 Angstrom. The pair distribution function remains essentially invariant during the sol-gel transition, suggesting that gelation involves the formation of a few points of connection between the aggregates resulting in a gel network constituted by essentially linear chains of clusters..
Resumo:
In this paper we describe the production of zirconia-based foams by a novel thermostimulated sol-gel route, that employs the foaming of colloidal suspensions prior to the sol-gel transition promoted by small increase of temperature (congruent to3 degreesC). This method produces gelled bodies having porosity >70% in the wet stage, and can be used to produce complex-shaped components. The effect of a foaming agent (Freon11 or CCl3F) and surfactant content on the formation and stability of the foams was analyzed. The rheologic measurements demonstrate that by increasing the surfactant concentration, the gelation time decreases increasing foam stability. As the surfactant concentration and quantity of foaming agent increase, the density decreases and the porosity increases. Hg porosimetry results show that the dry foam presents a bimodal pore size distribution. The family of sub-micrometer pores was attributed to the formation of a microemulsion between Freon11 and water. Scanning electron microscopy analysis shows that the foam structure consists of a three-dimensional network of spherical pores, which may be open and interconnected or closed, at larger or smaller porosities, respectively. Finally these results show that the thermostimulated sol-gel transition provides a potential route for ceramic foam manufacture. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The thermoreversible sol-gel transition is well-known in biological and organic polymeric systems but has not been reported for inorganic systems. In this paper we put in evidence a thermoreversible sol-gel transition for zirconyl chloride aqueous solutions modified by sulfuric acid in the ratio 3:1 Zr:SO4. The synthesis conditions are detailed and a variety of experimental techniques (turbidimetry, dynamic rheology, and EXAFS) have been employed for investigating the thermal reversibility and the chemical structure of this new material. Turbidimetric measurements performed for solutions containing different concentrations of precursor have evidenced that the sol-gel transformation temperature increases from 50 to 80 degrees C as the concentration of zirconyl chloride decreases from 0.22 to 0.018 mol L-1. A more detailed study has been done for the sample with [Zr] = 0.156 mol L-1, in which the sol-gel-sol transformation has been repeated several times by a cyclic variation of the temperature. The mechanical properties of this sample, evaluated by measuring the storage and the loss moduli, show a change from liquid like to viscoelastic to elastic behavior during the sol-gel transition and vice versa during the gel-sol one. In situ EXAFS measurements performed at the Zr K-edge show that no change of the local order around Zr occurs during the sol-gel-sol transition, in agreement with the concept of physical gel formation. We have proposed for the structure of the precursor an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded in surface by complexing sulfate ligands, the sulfate groups act as a protective layer, playing a key role in the linking propagation among primary particles during sol-gel-sol transition.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol-gel transition observed in this system. The study of suspensions prepared with different molar ratios R-S = [Zr]/[SO42-] and R-Cl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of R-S and R-Cl on the structural features of nanoparticles and on the particle solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemical analysis revealed that irrespective of the nominal value of R-S and R-Cl all studied samples of the thermoreversible domain are constituted by a well-defined compound possessing an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded on the surface by complexing sulfate ligands. zeta potentials of powders extracted by freeze-drying from the thermoreversible gel revealed a point of surface charge inversion attributed to the specific adsorption of SO42- ion. Thermoreversible gel formation is rationalized by considering the effect of the specific adsorption on the electrical double-layer repulsion together with the temperature dependency of the physical chemical properties of ions in solution.
Resumo:
The sols prepared by mixing a ZrOCl2 acidified solution to a hot H2SO4 aqueous solutions were studied in order to clarify the mechanism of thermoreversible sol-gel transition observed in this system. The viscoelastic properties of these suspensions were analyzed during the sol-gel transition by dynamic rheological measurements and quasi-elastic light scattering. The rheological properties were correlated to mass fractal and nearly linear growth models, and percolation theory. The results evidence that the thermoreversible sol-gel transition in this system is due to the formation of a network of physically linked aggregates having fractal structure. The decrease of the SO42- contents in the initial solution leads to the decrease of the fractal dimensionality from 2.3 to 1.8, indicating a change of the kinetic mechanism of aggregate growth. Near the gel point these samples have the typical scaling expected from percolation theory. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper describes particle aggregation process during gelation of SnO2 hydrosols. The effect of the concentration of SnO2 colloidal particles on the kinetics of gelation of hydrosols containing PVA (poly(vinyl alcohol)) was analysed by dynamic rheological measurements. The complex viscosity and the storage and loss moduli have been measured during the sol-gel transition and the results correlated to mass fractal growth, nearly linear growth models, and scalar percolation theory. The analysis of the experimental results shows that a linear aggregation occurs in the initial step of the gelation followed by a fractal growth to form a three-dimensional network. Near the gel point this physical gel exhibits the typical scaling expected from an electrical percolation analogy. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper an unprecedent thermo-reversible sol-gel transition for titania nanoparticles dispersed in a solution of p-toluene sulfonic acid (PTSH) in isopropanol is reported. The sol formed by the thermo-hydrolysis at 60 degrees C of titanium tetraisopropoxide (Ti((OPr)-Pr-i)(4)) reversibly changes into a turbid gel upon cooling to room temperature. Turbidimetric measurements performed for samples containing different nominal acidity ratios (A = [PTSH]/[Ti]) have evidenced that the gel transformation temperature increases from 20 to 35 degrees C as the [PTSH]/[Ti] ratio increases from 0.2 to 2.0. SAXS results indicate that the thermo-reversible gelation is associated to a reversible aggregation of a monodisperse set of titania nanoparticles with average gyration radius of approximate to 2 nm. From the different PTSH species evidenced by Raman spectroscopy and TG/DTA of dried gels we proposed that the then-no-reversible gelation in this systems is induced by the formation of a supramolecular network, in which the protonated surface of nanoparticles is interconnected through cooperative hydrogen bonds between -SO3 groups of p-toluene sulfonic acid. (C) 2009 Elsevier Ltd. All rights reserved.
Evolution of the viscoelastic properties of SnO2 colloidal suspensions during the sol-gel transition
Resumo:
This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)