913 resultados para Soils - Sampling
Resumo:
In recent years the Iowa Department of Transportation has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for evaluating pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. Road Rater non-destructive testing has fulfilled this need and has been used successfully to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays and portland cement concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by various individuals who are involved in pavement restoration and management. Road Rater evaluation techniques have worked well to date and have been verified by pavement coring, soils sampling and testing. Void detection testing has also been performed, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater evaluation techniques are reasonably accurate. The success of Road Rater research and development has made dynamic deflection test data an important pavement management input.
Resumo:
In recent years the Iowa DOT has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for analyzing pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. This need has been fulfilled by Road Rater testing which has been used successfully on all types of pavements to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by the widely diverse groups of individuals which may be involved in pavement restoration and management. Road Rater analysis techniques have worked well to date and have been verified by pavement coring, soils sampling and testing, and pavement removal by block sampling. Void detection testing has also been performed experimentally in Iowa, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater analysis techniques are reasonably accurate. The success of Road Rater research and development has made deflection test data one of the most important pavement management inputs.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.
Resumo:
As part of the European Commission (EC)'s revision of the Sewage Sludge Directive and the development of a Biowaste Directive, there was recognition of the difficulty of comparing data from Member States (MSs) because of differences in sampling and analytical procedures. The 'HORIZONTAL' initiative, funded by the EC and MSs, seeks to address these differences in approach and to produce standardised procedures in the form of CEN standards. This article is a preliminary investigation into aspects of the sampling of biosolids, composts and soils to which there is a history of biosolid application. The article provides information on the measurement uncertainty associated with sampling from heaps, large bags and pipes and soils in the landscape under a limited set of conditions, using sampling approaches in space and time and sample numbers based on procedures widely used in the relevant industries and when sampling similar materials. These preliminary results suggest that considerably more information is required before the appropriate sample design, optimum number of samples, number of samples comprising a composite, and temporal and spatial frequency of sampling might be recommended to achieve consistent results of a high level of precision and confidence. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a critique of current methods of sampling and analyzing soils for metals in archaeological prospection. Commonly used methodologies in soil science are shown to be suitable for archaeological investigations, with a concomitant improvement in their resolution. Understanding the soil-fraction location, concentration range, and spatial distribution of autochthonous (native) soil metals is shown to be a vital precursor to archaeological-site investigations, as this is the background upon which anthropogenic deposition takes place. Nested sampling is suggested as the most cost-effective method of investigating the spatial variability in the autochthonous metal concentrations. The use of the appropriate soil horizon (or sampling depth) and point sampling are critical in the preparation of a sampling regime. Simultaneous extraction is proposed as the most efficient method of identifying the location and eventual fate of autochthonous and anthropogenic metals, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha(-1) (K(1.5), K(3.0), 1(4.5, respectively) as KCl, 3.0 kmol K ha(-1) applied as K(2)SO(4), 3.0 kmol Na ha(-1) (Na(3.0)) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha(-1) (K(1.5) + Na(1.5)) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients. A positive effect of NaCl applications on the growth of E. grandis trees was observed. NaCl and KCl additions in treatments Na(3.0) and K(3.0) increased above-ground biomass by 56% and 130% three years after planting, respectively, in comparison with the C treatment. By contrast, accumulated litterfall up to age 3 years was not significantly modified. NaCl applications in the Na(3.0) treatment significantly increased Na accumulation in above-ground tree components but did not modify K accumulation, whatever the sampling age. A partial substitution of K by Na in tree physiology, as observed for various agricultural crops, might explain this behaviour. Our results suggest the possibility of applying inexpensive K fertilizers, which are less purified in Na, and explain why high yields are achieved without K fertilizer applications in areas with large dry depositions of marine aerosols. Further investigations are necessary to identify the processes involving Na in Eucalyptus tree physiology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.
Resumo:
Strategies for sampling sediment bacteria were examined in intensive shrimp, Penaeus monodon (Fabricius), ponds in tropical Australia. Stratified sampling of bacteria at the end of the production season showed that the pond centre, containing flocculated sludge, had significantly higher bacterial counts (15.5 X 10(9) g(-1) dw) than the pond periphery (8.1 X 10(9) g(-1) dw), where the action of aerators had swept the pond floor. The variation in bacterial counts between these two zones within a pond was higher than that between sites within each zone or between ponds. Therefore, sampling effort should be focused within these zones: for example, sampling two ponds at six locations within each of the two zones resulted in a coefficient of variation of approximate to 5%. Bacterial numbers in the sediment were highly correlated with sediment grain size, probably because eroded soil particles and organic waste both accumulated in the centre of the pond. Despite high inputs of organic matter added to the ponds, principally as pelleted feeds, the mean bacterial numbers and nutrient concentrations (i.e. organic carbon, nitrogen and phosphorus) in the sediment were similar to those found in mangrove sediments. This suggests that bacteria are rapidly remineralizing particulates into soluble compounds. Bacterial numbers were highly correlated with organic carbon and total kjeldahl nitrogen in the sediment, suggesting that these were limiting factors to bacterial growth.