995 resultados para Soil pollutants


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Gram-negative, rod-shaped, aerobic bacterium, designated strain RP007(T), was isolated from a polycyclic aromatic hydrocarbon-contaminated soil in New Zealand. Two additional strains were recovered from a compost heap in Belgium (LMG 18808) and from the rhizosphere of maize in the Netherlands (LMG 24204). The three strains had virtually identical 16S rRNA gene sequences and whole-cell protein profiles, and they were identified as members of the genus Burkholderia, with Burkholderia phenazinium as their closest relative. Strain RP007(T) had a DNA G+C content of 63.5 mol% and could be distinguished from B. phenazinium based on a range of biochemical characteristics. Strain RP007(T) showed levels of DNA-DNA relatedness towards the type strain of B. phenazinium and those of other recognized Burkholderia species of less than 30 %. The results of 16S rRNA gene sequence analysis, DNA-DNA hybridization experiments and physiological and biochemical tests allowed the differentiation of strain RP007(T) from all recognized species of the genus Burkholderia. Strains RP007(T), LMG 18808 and LMG 24204 are therefore considered to represent a single novel species of the genus Burkholderia, for which the name Burkholderia sartisoli sp. nov. is proposed. The type strain is RP007(T) (=LMG 24000(T) =CCUG 53604(T) =ICMP 13529(T)).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colloidal transport has been shown to enhance the migration of plutonium in groundwater downstream from contaminated sites, but little is known about the adsorption of ⁹⁰Sr and plutonium onto colloids in the soil solution of natural soils. We sampled soil solutions using suction cups, and separated colloids using ultrafiltration to determine the distribution of ²³⁹Pu and ⁹⁰Sr between the truly dissolved fraction and the colloidal fraction of the solutions of three Alpine soils contaminated only by global fallout from the nuclear weapon tests. Plutonium was essentially found in the colloidal fraction (>80%) and probably associated with organic matter. A significant amount of colloidal ⁹⁰Sr was detected in organic-rich soil solutions. Our results suggest that binding to organic colloids in the soil solutions plays a key role with respect to the mobility of plutonium in natural alpine soils and, to a lesser extent, to the mobility of ⁹⁰Sr.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However. it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review. aspects of the life history, ecology, and ecotoxicology of F candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F candida using the protocol published by the International Standards Organization in 1999.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However. it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review. aspects of the life history, ecology, and ecotoxicology of F candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F candida using the protocol published by the International Standards Organization in 1999.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After the prohibition of organochlorine-pesticide use in Brazil for controlling insect vector diseases, Mato Grosso State gathered the exceeding DDT and stored it irregularly in an open air area that belongs to the National Health Foundation, causing soil contamination. This study aimed to evaluate the contamination level and dissipation of p,p′-DDT and p,p′-DDE in this area. For that, surface soil samples were collected on 19 September 2000, 15 December 2000, 4 April 2001 and soil samples 30-40 cm; 60-70 cm and 90-100 cm deep were taken from five points in the studied area on 17 July 2001. The contaminants were determined by a small scale method which consists on extraction and clean-up steps combined into one step by transferring soil samples mixed with neutral alumina to a chromatographic column prepacked with neutral alumina and elution with hexane:dichloromethane (7:3 v:v). The eluate was concentrated and the analytes were quantified by gas chromatography with an electron-capture detector. p,p′-DDT at surface soil ranged from 3800 to 7300 mg kg -1. 30-40 cm deep soil sample concentrations varied from 0.036 to 440 mg kg -1 while 90-100 cm deep samples varied from 0.069 to 180 mg kg -1. Volatilization is probably the main dissipation process. The p,p′-DDT is moving slowly downward in the soil profile, however, the levels of this contaminant are high enough to present risk to underground waters. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples–Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93–117 and 26,400–31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4–30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordão presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordão and Marialva cultivars accumulated not statistically significant different concentrations of different metals. The advantages of using INAA are the multielementality, low detection limits and use of solid samples (no need of digestion).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after 60 days storage at 30 degrees C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with sugarcane molasses and immobilized on corncob powder retained 15-20% culturability after 30 days storage at 30 degrees C, whereas full culturability was maintained when cells were stored frozen at -20 degrees C. On the contrary, cells stored on corncob degraded gamma-HCH faster than those that had been stored frozen, with between 15 and 85% of gamma-HCH disappearance in microcosms within 20 h at 30 degrees C. Soil microcosm tests at 25 degrees C confirmed complete mineralization of [(14)C]-gamma-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The polycyclic aromatic hydrocarbon (PAH)-degrading strain Burkholderia sp. RP007 served as host strain for the design of a bacterial biosensor for the detection of phenanthrene. RP007 was transformed with a reporter plasmid containing a transcriptional fusion between the phnS putative promoter/operator region and the gene encoding the enhanced green fluorescent protein (GFP). The resulting bacterial biosensor--Burkholderia sp. strain RP037--produced significant amounts of GFP after batch incubation in the presence of phenanthrene crystals. Co-incubation with acetate did not disturb the phenanthrene-specific response but resulted in a homogenously responding population of cells. Active metabolism was required for induction with phenanthrene. The magnitude of GFP induction was influenced by physical parameters affecting the phenanthrene flux to the cells, such as the contact surface area between solid phenanthrene and the aqueous phase, addition of surfactant, and slow phenanthrene release from Model Polymer Release System beads or from a water-immiscible oil. These results strongly suggest that the bacterial biosensor can sense different phenanthrene fluxes while maintaining phenanthrene metabolism, thus acting as a genuine sensor for phenanthrene bioavailability. A relationship between GFP production and phenanthrene mass transfer is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mountainous areas are often covered by little evolved soils from which deposited radionuclides can potentially leak into the vadose zone. In the Swiss Jura mountains, we observed unusual isotopic ratios of nuclear weapon test (NWTs) fallout with an apparent loss of NWTs plutonium relative to &supl;³⁷Cs of Chernobyl origin in thinner soils. Here, we studied the karstic watershed of a vauclusian spring to determine the residence times of plutonium, ²⁴&supl;Am, and ⁹⁰Sr deposited by global fallout and their respective mobility in carbonaceous soils. The results show that ⁹⁰Sr is washed most efficiently from the watershed with a residence time of several hundred years. The estimated plutonium residence time is more than 10 times higher (in the range of 5000-10,000 years), and the ²⁴&supl;Am residence time is double that of plutonium. The spring water ²⁴&supl;Am/²³⁹+²⁴⁰Pu isotopic ratio is lower (0.12 - 0.28) than found in watershed soils (0.382 ± 0.077). Similar differences are found in aquatic mosses (²⁴&supl;Am/²³⁹+²⁴⁰Pu isotopic ratio 0.05-0.12), which are permanently submerged in spring waters. In contrast to plutonium, ⁹⁰Sr is leached from these mosses with 0.5M HCl, demonstrating that strontium is probably associated with calcium carbonate precipitations on the mosses. The higher plutonium to americium isotopic ratio found in the samples of spring water and mosses at the outlet of the karst shows that plutonium mobility is enhanced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work is to study metal and As concentrations in soil due to ash deposition from a coal plant at Figueira (PR), evaluating the macroelement (Al, Ca, Fe, Mg, Mn, Ti, V) and microelement (As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn) concentrations in the soil around the coal plant. The plant operation caused a slight increase in the majority of the metal concentrations in the top soil close to the plant (up to 1 km) in the wind direction (NW). The elements As, Cd, Mo, Pb and Zn are considered likely soil pollutants, and As is considered the only critical element.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)