999 resultados para Soil interpretation
Resumo:
This work is the result of a year-long study of the definitions of inland wetlands in which definitions from geology, hydrogeology, hydrology, pedology, biology, systems ecology, sociology, economics, political sciences, public health and law were considered. Of these, geology, hydrogeology, hydrology, biology, systems ecology and economics are discussed in detail in this report and used in writing a final theoretical (ideal) definition of inland wetlands for the glaciated northeastern United States. A proposed legal definition for Connecticut is also offered with descriptions and explanations of terms.
Resumo:
Report produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.
Resumo:
"TID-6567."
Resumo:
Different methods to study the evolution of fabric anisotropy are presented. DEM simulations on assemblies of spheres subjected to different stress paths using a three-dimensional periodic cell are used for the analysis of these methods. The links between soil fabric and macro-scale behaviour are also discussed.
Resumo:
The reflectance signatures of plantation pine canopy and understorey components were measured using a spectro-radiometer. The aim was to establish whether differences observed in the reflectance signature of stressed and unstressed pine needles were consistent with observed differences in the reflectance of multispectral Landsat Thematic Mapper (TM) images of healthy and stressed forest. Because overall scene reflectance includes the contribution of each scene component, needle reflectance may not be representative of canopy reflectance. In this investigation, a limited dataset of reflectance signatures from stressed and unstressed needles confirmed the negative relationship between pine needle health and reflectance which was observed in visible red wavelengths. However, the reflectance contribution from bushes, pine needle litter and bare soil tended to reinforce this relationship suggesting that in this instance, overall scene reflectance is comprised of the proportional reflectance of each scene component. In near infrared wavelengths, differences between healthy and stressed needle reflectance suggested a strong positive relationship between reflectance and tree health. For Landsat TM images, previous research had only observed a weak positive relationship between stand health and near infrared reflectance in these pine canopies. This suggests that for multispectral Landsat TM images, reflectance of near infrared light from pine canopies may be affected by other factors which may include the scattering of light within canopies. These results are seen as promising for the use of hyperspectral images to detect stand health, provided that pixel reflectance is not influenced by other scene components.
Resumo:
The use of 'balanced' Ca, Mg, and K ratios, as prescribed by the basic cation saturation ratio (BCSR) concept, is still used by some private soil-testing laboratories for the interpretation of soil analytical data. This review aims to examine the suitability of the BCSR concept as a method for the interpretation of soil analytical data. According to the BCSR concept, maximum plant growth will be achieved only when the soil’s exchangeable Ca, Mg, and K concentrations are approximately 65 % Ca, 10 % Mg, and 5 % K (termed the ‘ideal soil’). This ‘ideal soil’ was originally proposed by Firman Bear and co-workers in New Jersey (USA) during the 1940s as a method of reducing luxury K uptake by alfalfa (Medicago sativa L.). At about the same time, William Albrecht, working in Missouri (USA), concluded through his own investigations that plants require a soil with a high Ca saturation for optimal growth. Whilst it now appears that several of Albrecht’s experiments were fundamentally flawed, the BCSR (‘balanced soil’) concept has been widely promoted, suggesting that the prescribed cationic ratios provide optimum chemical, physical, and biological soil properties. Our examination of data from numerous studies (particularly those of Albrecht and Bear, themselves) would suggest that, within the ranges commonly found in soils, the chemical, physical, and biological fertility of a soil is generally not influenced by the ratios of Ca, Mg, and K. The data do not support the claims of the BCSR, and continued promotion of the BCSR will result in the inefficient use of resources in agriculture and horticulture.
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
The graphical representation of spatial soil properties in a digital environment is complex because it requires a conversion of data collected in a discrete form onto a continuous surface. The objective of this study was to apply three-dimension techniques of interpolation and visualization on soil texture and fertility properties and establish relationships with pedogenetic factors and processes in a slope area. The GRASS Geographic Information System was used to generate three-dimensional models and ParaView software to visualize soil volumes. Samples of the A, AB, BA, and B horizons were collected in a regular 122-point grid in an area of 13 ha, in Pinhais, PR, in southern Brazil. Geoprocessing and graphic computing techniques were effective in identifying and delimiting soil volumes of distinct ranges of fertility properties confined within the soil matrix. Both three-dimensional interpolation and the visualization tool facilitated interpretation in a continuous space (volumes) of the cause-effect relationships between soil texture and fertility properties and pedological factors and processes, such as higher clay contents following the drainage lines of the area. The flattest part with more weathered soils (Oxisols) had the highest pH values and lower Al3+ concentrations. These techniques of data interpolation and visualization have great potential for use in diverse areas of soil science, such as identification of soil volumes occurring side-by-side but that exhibit different physical, chemical, and mineralogical conditions for plant root growth, and monitoring of plumes of organic and inorganic pollutants in soils and sediments, among other applications. The methodological details for interpolation and a three-dimensional view of soil data are presented here.
Resumo:
The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.
Resumo:
As opposed to objective definitions in soil physics, the subjective term “soil physical quality” is increasingly found in publications in the soil physics area. A supposed indicator of soil physical quality that has been the focus of attention, especially in the Brazilian literature, is the Least Limiting Water Range (RLL), translated in Portuguese as "Intervalo Hídrico Ótimo" or IHO. In this paper the four limiting water contents that define RLLare discussed in the light of objectively determinable soil physical properties, pointing to inconsistencies in the RLLdefinition and calculation. It also discusses the interpretation of RLL as an indicator of crop productivity or soil physical quality, showing its inability to consider common phenological and pedological boundary conditions. It is shown that so-called “critical densities” found by the RLL through a commonly applied calculation method are questionable. Considering the availability of robust models for agronomy, ecology, hydrology, meteorology and other related areas, the attractiveness of RLL as an indicator to Brazilian soil physicists is not related to its (never proven) effectiveness, but rather to the simplicity with which it is dealt. Determining the respective limiting contents in a simplified manner, relegating the study or concern on the actual functioning of the system to a lower priority, goes against scientific construction and systemic understanding. This study suggests a realignment of the research in soil physics in Brazil with scientific precepts, towards mechanistic soil physics, to replace the currently predominant search for empirical correlations below the state of the art of soil physics.
Resumo:
The Mehlich-1 (M-1) extractant and Monocalcium Phosphate in acetic acid (MCPa) have mechanisms for extraction of available P and S in acidity and in ligand exchange, whether of the sulfate of the extractant by the phosphate of the soil, or of the phosphate of the extractant by the sulfate of the soil. In clayey soils, with greater P adsorption capacity, or lower remaining P (Rem-P) value, which corresponds to soils with greater Phosphate Buffer Capacity (PBC), more buffered for acidity, the initially low pH of the extractants increases over their time of contact with the soil in the direction of the pH of the soil; and the sulfate of the M-1 or the phosphate of the MCPa is adsorbed by adsorption sites occupied by these anions or not. This situation makes the extractant lose its extraction capacity, a phenomenon known as loss of extraction capacity or consumption of the extractant, the object of this study. Twenty soil samples were chosen so as to cover the range of Rem-P (0 to 60 mg L-1). Rem-P was used as a measure of the PBC. The P and S contents available from the soil samples through M-1 and MCPa, and the contents of other nutrients and of organic matter were determined. For determination of loss of extraction capacity, after the rest period, the pH and the P and S contents were measured in both the extracts-soils. Although significant, the loss of extraction capacity of the acidity of the M-1 and MCPa extractants with reduction in the Rem-P value did not have a very expressive effect. A “linear plateau” model was observed for the M-1 for discontinuous loss of extraction capacity of the P content in accordance with reduction in the concentration of the Rem-P or increase in the PBC, suggesting that a discontinuous model should also be adopted for interpretation of available P of soils with different Rem-P values. In contrast, a continuous linear response was observed between the P variables in the extract-soil and Rem-P for the MCPa extractor, which shows increasing loss of extraction capacity of this extractor with an increase in the PBC of the soil, indicating the validity of the linear relationship between the available S of the soil and the PBC, estimated by Rem-P, as currently adopted.