999 resultados para Soil enzyme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pine wood and barley straw biochar amendments to Kettering and Cameroon sandy silt loam soils (15, 30, or 150 mg biochar g−1 soil) caused significant reductions (up to 80%,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A soil sample was taken from the top 0-20cm at Jaboticabal county, São Paulo State, Brazil, air dried, sieved to 5mm, and placed into pots (2700g per pot). Sewage sludge was air-dried, ground to 2mm, and thoroughly mixed to the top 0-10cm soil of each pot, which were irrigated with distilled water in a total volume equivalent to the last 30years average rainfall in the region. Sorghum was sowed 120days after sewage sludge incorporation and then the irrigation was made according to the plants' requirement. When the plants were about 10 cm high, they were thinned to two per pot. Soil samples (0-10, 10-20, and 20-30 cm depth) were obtained immediately after the incorporation of sewage sludge and at 30, 60, 120, and 170 days after, air dried, sieved to 2 mm and analyzed for organic matter (OM), pH (0,01 mol L-1 CaCl2), extractable P (resin), potassium (K), calcium (Ca), and magnesium (Mg), amylase and cellulase activity. Sewage sludge increased soil OM, pH, extractable phosphorus (P), K. Ca. amylase and cellulase activity, especially at the rate 16 t ha(-1). Organic matter, extractable P, K, Ca, Mg. and amylase activity were higher in the top 0-10cm, while pH was higher in the 20-30cm layer. Amylase activity was not affected by sampling depth. Organic matter, pH, extractable P. K, Ca, and Mg decreased during the experimental period. Amylase activity decreased until sorghum was sowed and increased afterwards. Cellulase activity increased until 90 days after sewage sludge application and then decreased. Sewage sludge used in the experiment should already contain some amylase activity or a substance that was a soil enzyme activator and also a substance that was an inhibitor of soil cellulase inhibitor. Sonic of the plant nutrients contained in sewage sludge, mainly P, did not migrate down the soil column. an indication that sewage sludge should be incorporated into the soil to improve nutrient bioavailability. Sorghum roots increased amylase activity but did not affect cellulase activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil microorganisms have evolved two possible mechanisms for their uptake of organic N: the direct route and the mobilization-immobilization-turnover (MIT) route. In the direct route, simple organic molecules are taken up via various mechanisms directly into the cell. In the MIT route, the deamination occurs outside the cell and all N is mineralized to NH4+ before assimilation. A better understanding of the mechanisms controlling the different uptake routes of soil microorganisms under different environmental conditions is crucial for understanding mineralization processes of organic material in soil. For the first experiment we incubated soil samples from the long term trial in Bad Lauchstädt with corn residues with different C to N ratios and inorganic N for 21 days at 20 °C. Under the assumption that all added amino acids were taken up or mineralized, the direct uptake route was more important in soil amended with corn residues with a wide C to N ratio. After 21 days of incubation the direct uptake of added amino acids increased in the order addition of corn residue with a: “C to N ratio of 40 & (NH4)2SO4 and no addition (control)” (69% and 68%, respectively) < “C to N ratio of 20” (73%) < “C to N ratio of 40” (95%). In all treatments the proportion of the added amino acids that were mineralized increased with time, indicating that the MIT route became more important over time. To investigate the effects of soil depth on the N uptake route of soil microorganisms (experiment II), soil samples in two soil depths (0-5 cm; 30-40 cm) were incubated with corn residues with different C to N ratios and inorganic N for 21 days at 20 °C and 60% (WHC). The addition of corn residue resulted in a marked increase of protease activity in both depths due to the induction from the added substrate. Addition of corn residue with a wide C to N ratio resulted in a significantly greater part of the direct uptake (97% and 94%) than without the addition of residues (85% and 80%) or addition of residue with a small C to N ratio (90% and 84%) or inorganic N (91% and 79% in the surface soil and subsoil, respectively), suggesting that under conditions of sufficient mineralizable N (C to N ratio of 20) or increased concentrations of NH4+, the enzyme system involved in the direct uptake is slightly repressed. Substrate additions resulted in an initially significantly higher increase of the direct uptake in the surface soil than in the subsoil. As a large proportion of the organic N input into soil is in form of proteinaceous material, the deamination of amino acids is a key reaction of the MIT route. Therefore the enzyme amino acid oxidase contribute to the extracellular N mineralization in soil. The objective of experiment III was to adapt a method to determine amino acid oxidase in soil. The detection via synthetic fluorescent Lucifer Yellow derivatives of the amino acid lysine is possible in soil. However, it was not possible to find the substrate concentration at which the reaction rate is independent of substrate concentration and therefore we were not able to develop a valid soil enzyme assay.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil microcosms contaminated with crude oil with or without chromium and copper were monitored over a period of 90 days for microbial respiration, biomass, and for dehydrogenase, lipase, acid phosphatase, and arylsulfatase activities. In addition, the community structure was followed by enumerating the total heterotrophic and oil-degrading viable bacteria and by performing a denaturing gradient gel electrophoresis (DGGE) of the PCR amplified 16S rDNA. A significant difference was observed for biochemical activities and microbial community structures between the microcosms comprised of uncontaminated soil, soil contaminated with crude oil and soil contaminated with crude oil and heavy metals. The easily measured soil enzyme activities correlated well with microbial population levels, community structures and rates of respiration (CO2 production). The estimation of microbial responses to soil contamination provides a more thorough understanding of the microbial community function in contaminated soil, in situations where technical and financial resources are limited and may be useful in addressing bioremediation treatability and effectiveness. (C) 2012 Published by Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As global climate continues to change, it becomes more important to understand possible feedbacks from soils to the climate system. This dissertation focuses on soil microbial community responses to climate change factors in northern hardwood forests. Two soil warming experiments at Harvard Forest in Massachusetts, and a climate change manipulation experiment with both elevated temperature and increased moisture inputs in Michigan were sampled. The hyphal in-growth bag method was to understand how soil fungal biomass and respiration respond to climate change factors. Our results from phospholipid fatty acid (PLFA) analyses suggest that the hyphal in-growth bag method allows relatively pure samples of fungal hyphae to be partitioned from bacteria in the soil. The contribution of fungal hyphal respiration to soil respiration was examined in climate change manipulation experiments in Massachusetts and Michigan. The Harvard Forest soil warming experiments in Massachusetts are long-term studies with 8 and 18 years of +5 °C warming treatment. Hyphal respiration and biomass production tended to decrease with soil warming at Harvard Forest. This suggests that fungal hyphae adjust to higher temperatures by decreasing the amount of carbon respired and the amount of carbon stored in biomass. The Ford Forestry Center experiment in Michigan has a 2 x 2 fully factorial design with warming (+4-5 °C) and moisture addition (+30% average ambient growing season precipitation). This experiment was used to examine hyphal growth and respiration of arbuscular mycorrhizal fungi (AMF), soil enzymatic capacity, microbial biomass and microbial community structure in the soil over two years of experimental treatment. Results from the hyphal in-growth bag study indicate that AMF hyphal growth and respiration respond negatively to drought. Soil enzyme activities tend to be higher in heated versus unheated soils. There were significant temporal variations in enzyme activity and microbial biomass estimates. When microbial biomass was estimated using chloroform fumigation extractions there were no differences between experimental treatments and the control. When PLFA analyses were used to estimate microbial biomass we found that biomass responds negatively to higher temperatures and positively to moisture addition. This pattern was present for both bacteria and fungi. More information on the quality and composition of the organic matter and nutrients in soils from climate change manipulation experiments will allow us to gain a more thorough understanding of the mechanisms driving the patterns reported here. The information presented here will improve current soil carbon and nitrogen cycling models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of Bokashi (B, a fermented compost), slow-release fertilizers (SRFs) and their combined application on mycorrhizal colonization (MC), soil invertase, cellulase, acid (AcP) and alkaline (AlP) phosphatases activities and maize (Zea mays L.) yield was investigated in terrace (TS) and valley (VS) soils in Oaxaca, Mexico. A complete randomized design, seven fertilizer treatments and four replications were used: unamended control (C); conventional fertilization (90-46-00 NPK) (CF); B; SRF1 (Multigro 6®, 21-14-10 NPK); SRF2 (Multigro 3®, 24-05-14 NPK); B+SRF1; B+SRF2. Highest root colonization percentage: CF in VS, and SRF2 in TS. Highest extraradical mycelium length: B, B+SRF1, CF in VS, and B+SRF1 in TS. In both soils, B increased the spore number. Highest AcP activity: B, SRF2 in VS, and B+SRF1, B+SRF2 in TS. Highest AlP activity: B+SRF1, CF in VS, and C in TS. Highest invertase activity: B+SRF1, SRF2, CF in VS, and B in TS. Grain yield only increased with B in VS. The significant interaction soil type × fertilizer treatment for the majority of the biological soil properties analyzed suggests that MC and soil enzyme activity response to fertilization was influenced by soil type. Bokashi, alone or combined with SRFs improves biological soil fertility in maize fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.