985 resultados para Soil - Compaction and irrigation
Resumo:
Selostus: Maan tiiviyden, sadetuksen ja typpilannoituksen vaikutus porkkanan kivennäisainepitoisuuteen ja ravinteiden ottoon sekä nitraatin kertymiseen
Resumo:
Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.
Resumo:
During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil compaction has a negative effect and Ca was shown to enhance root growth. The effects of soil subsurface compaction and liming on root growth and nutrient uptake by soybean were studied at the Department of Agriculture and Plant Breeding, São Paulo State University, Brazil. A Dark Red Latosol, sandy loam (Haplortox) was limed to raise base saturations to 40.1, 52.4 and 66.7%. The experimental pots were made of PVC tubes with 100 mm of diameter. Three rings with 150, 35 and 150 mm long were fixed one on the top of the other. In the central ring of 35 mm, the soil was compacted to bulk densities of 1.06, 1.25, 1.43 and 1.71 g.cm(-3). There was no effect of base saturation on soybean root and shoot growth and nutrition. Subsurface compaction led to an increase in root growth in the superficial layer of the pots with a correspondent quadratic decrease in the compacted layer. There was no effect of subsoil compaction on total root length and surface, soybean growth and nutrition. Soybean root growth was decreased by 10% and 50% when the soil penetrometer resistances were 0.52 MPa (bulk density of 1.45 g.cm(-1)) and 1.45 MPa (bulk density of 1.69 g.cm(-3)), respectively. In spite of the poor root growth in the compacted layer, once it nas overcome the root system showed an almost complete recovery.
Resumo:
Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.
Resumo:
Right development of ROOT SYSTEMS is essential to ensure seedling survival in the initial stages of natural regeneration processes. Soil compaction determines this development both because of its influence on soil Tª & moisture dynamics and for its direct effect on soil mechanical impedance to root growth. All this effects can be assessed as a whole through soil penetration resistance (Soil Strength) measurements. SOIL STRENGTH has been usually evaluated in forest research in connection with severe disturbances derived from heavy machinery works during forest operations. Nevertheless, undisturbed soils are also expected to show different levels of compaction for root development. Organic matter modifies soil structure and so on porosity, compaction and resultant soil resistance to penetration. Its concentration in surface layers is rather related to vegetation cover composition and density. So within forest stands, a relationship is expected to be found between VEGETATION COVER density and compaction measured as resistance to penetration (soil strength)
Resumo:
The objective of this study was to determine the best combination of management options for upland rice production: seed treatment, N management and soil compaction in zero and conventional tillage methods.
Resumo:
The research aimed to evaluate machine traffic effect on soil compaction and the least limiting water range related to soybean cultivar yields, during two years, in a Haplustox soil. The six treatments were related to tractor (11 Mg weight) passes by the same place: T0, no compaction; and T1*, 1; T1, 1; T2, 2; T4, 4 and T6, 6. In the treatment T1*, the compaction occurred when soil was dried, in 2003/2004, and with a 4 Mg tractor in 2004/2005. Soybean yield was evaluated in relation to soil compaction during two agricultural years in completely randomized design (compaction levels); however, in the second year, there was a factorial scheme (compaction levels, with and without irrigation), with four replicates represented by 9 m² plots. In the first year, soybean [Glycine max (L.) Merr.] cultivar IAC Foscarim 31 was cultivated without irrigation; and in the second year, IAC Foscarim 31 and MG/BR 46 (Conquista) cultivars were cultivated with and without irrigation. Machine traffic causes compaction and reduces soybean yield for soil penetration resistance between 1.64 to 2.35 MPa, and bulk density between 1.50 to 1.53 Mg m-3. Soil bulk density from which soybean cultivar yields decrease is lower than the critical one reached at least limiting water range (LLWR =/ 0).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Berry size and crop yield are widely recognized as important factors that contribute to wine quality. The final berry size indirectly affects the phenolic concentration of the wine due to skin surface-to-berry volume ratio. The effects of different irrigation levels, soil management and plant crop level on growth of ‘Trincadeira’ berries were studied. In order to test the influence of different irrigation levels (rainfed, pre-veraison and post-veraison), different soil management (tillage and natural cover crops) and different plant crop levels (8 and 16 clusters per vine), leaf water potential, skin anthocyanin, polyphenols, berry skin and seed fresh weight were measured in fruits. The segregation of berries into three different berry classes: small, medium and large, allowed to identify different levels of contribution of soil management and irrigation level into berry, skin and seeds ratios. As expected, higher water availability due to irrigation and soil tillage management during berry development induced an increase in berry flesh weight and this was more evident in larger berries; however, berry skin and seed fresh weight remained unchanged. Also, anthocyanins did not show significant differences.
Resumo:
The impact of wood loads on bulk density and preconsolidation pressure and of harvester and forwarder traffic on rut depth, bulk density and preconsolidation pressure of two Ultisols were examined in this study. Our objective was to quantify the threshold beyond which significant soil compaction and rutting would occur. This study was carried out in the county of Eunápolis, state of Bahia, Brazil, (16 º 23 ' 17 '' S and 39 º 10 ' 06 '' W; altitude 80 m asl) in two Ultisols (PAd2 and PAd3) with different texture classes, in experimental areas with eucalypt plantation. The study involved measurements at the wood load site and machine driving at specific locations in the forest during logging operations. The treatments consisted of one harvester pass and, 8, 16 and 40 passes of a fully loaded forwarder. Thresholds were established based on the rut depth and percentage of preconsolidation pressure values in the region of additional soil compaction defined in the bearing capacity model. The percentage of soil samples with values of preconsolidation pressure in the region of additional soil compaction indicated a greater susceptibility of PAd3 than of PAd2 to soil compaction. The threshold levels established here based on preconsolidation pressure and rut depth indicated that no more than eight forwarder passes should be allowed in loading operations in order to minimize soil compaction.