974 resultados para Software requirements specifications
Resumo:
Automated acceptance testing is the testing of software done in higher level to test whether the system abides by the requirements desired by the business clients by the use of piece of script other than the software itself. This project is a study of the feasibility of acceptance tests written in Behavior Driven Development principle. The project includes an implementation part where automated accep- tance testing is written for Touch-point web application developed by Dewire (a software consultant company) for Telia (a telecom company) from the require- ments received from the customer (Telia). The automated acceptance testing is in Cucumber-Selenium framework which enforces Behavior Driven Development principles. The purpose of the implementation is to verify the practicability of this style of acceptance testing. From the completion of implementation, it was concluded that all the requirements from customer in real world can be converted into executable specifications and the process was not at all time-consuming or difficult for a low-experienced programmer like the author itself. The project also includes survey to measure the learnability and understandability of Gherkin- the language that Cucumber understands. The survey consist of some Gherkin exam- ples followed with questions that include making changes to the Gherkin exam- ples. Survey had 3 parts: first being easy, second medium and third most difficult. Survey also had a linear scale from 1 to 5 to rate the difficulty level for each part of the survey. 1 stood for very easy and 5 for very difficult. Time when the partic- ipants began the survey was also taken in order to calculate the total time taken by the participants to learn and answer the questions. Survey was taken by 18 of the employers of Dewire who had primary working role as one of the programmer, tester and project manager. In the result, tester and project manager were grouped as non-programmer. The survey concluded that it is very easy and quick to learn Gherkin. While the participants rated Gherkin as very easy.
Resumo:
Tese de Doutoramento em Tecnologias e Sistemas de Informação
Resumo:
Vaatimusmäärittelyn tavoitteena on luoda halutun järjestelmän kokonaisen, yhtenäisen vaatimusluettelon vaatimusten määrittämiseksi käsitteellisellä tasolla. Liiketoimintaprosessien mallintaminen on varsin hyödyllinen vaatimusmäärittelyn varhaisissa vaiheissa. Tämä työ tutkii liiketoimintaprosessien mallintamista tietojärjestelmien kehittämistä varten. Nykyään on olemassa erilaisia liiketoimintaprosessien mallintamiseen tarkoitettuja tekniikoita. Tämä työ tarkastaa liiketoimintaprosessien mallintamisen periaatteet ja näkökohdat sekä eri mallinnustekniikoita. Uusi menetelmä, joka on suunniteltu erityisesti pienille ja keskisuurille ohjelmistoprojekteille, on kehitetty prosessinäkökohtien ja UML-kaavioiden perusteella.
Resumo:
The aim of task scheduling is to minimize the makespan of applications, exploiting the best possible way to use shared resources. Applications have requirements which call for customized environments for their execution. One way to provide such environments is to use virtualization on demand. This paper presents two schedulers based on integer linear programming which schedule virtual machines (VMs) in grid resources and tasks on these VMs. The schedulers differ from previous work by the joint scheduling of tasks and VMs and by considering the impact of the available bandwidth on the quality of the schedule. Experiments show the efficacy of the schedulers in scenarios with different network configurations.
Resumo:
The software industry has become more and more concerned with the appropriate application of activities that composes requirement engineering as a way to improve the quality of its products. In order to support these activities, several computational tools have been available in the market, although it is still possible to find a lack of resources related to some activities. In this context, this paper proposes the inclusion of a module to aid in the requirements specification to a tool called Requirements Elicitation Support Tool. This module allows to specify requirements in accordance with IEEE 830 standard, thus contributing to the documentation of the requirements established for a software system, besides supporting the learning of concepts related to the requirements specification, which improves the skills of users of the tool. © 2012 IEEE.
Resumo:
In this paper we present VERITAS, a tool that focus time maintenance, that is one of the most important processes in the engineering of the time during the development of KBS. The verification and validation (V&V) process is part of a wider process denominated knowledge maintenance, in which an enterprise systematically gathers, organizes, shares, and analyzes knowledge to accomplish its goals and mission. The V&V process states if the software requirements specifications have been correctly and completely fulfilled. The methodologies proposed in software engineering have showed to be inadequate for Knowledge Based Systems (KBS) validation and verification, since KBS present some particular characteristics. VERITAS is an automatic tool developed for KBS verification which is able to detect a large number of knowledge anomalies. It addresses many relevant aspects considered in real applications, like the usage of rule triggering selection mechanisms and temporal reasoning.
Resumo:
During the development of system requirements, software system specifications are often inconsistent. Inconsistencies may arise for different reasons, for example, when multiple conflicting viewpoints are embodied in the specification, or when the specification itself is at a transient stage of evolution. These inconsistencies cannot always be resolved immediately. As a result, we argue that a formal framework for the analysis of evolving specifications should be able to tolerate inconsistency by allowing reasoning in the presence of inconsistency without trivialisation, and circumvent inconsistency by enabling impact analyses of potential changes to be carried out. This paper shows how clustered belief revision can help in this process. Clustered belief revision allows for the grouping of requirements with similar functionality into clusters and the assignment of priorities between them. By analysing the result of a cluster, an engineer can either choose to rectify problems in the specification or to postpone the changes until more information becomes available.
Resumo:
El presente proyecto fin de carrera, realizado por el ingeniero técnico en telecomunicaciones Pedro M. Matamala Lucas, es la fase final de desarrollo de un proyecto de mayor magnitud correspondiente al software de vídeo forense SAVID. El propósito del proyecto en su totalidad es la creación de una herramienta informática capacitada para realizar el análisis de ficheros de vídeo, codificados y comprimidos por el sistema DV –Digital Video-. El objetivo del análisis, es aportar información acerca de si la cinta magnética presenta indicios de haber sido manipulada con una edición posterior a su grabación original, además, de mostrar al usuario otros datos de interés como las especificaciones técnicas de la señal de vídeo y audio. Por lo tanto, se facilitará al usuario, analista de vídeo forense, información que le ayude a valorar la originalidad del contenido del soporte que es sujeto del análisis. El objetivo específico de esta fase final, es la creación de la interfaz de usuario del software, que informa tanto del código binario de los sectores significativos, como de su interpretación tras el análisis. También permitirá al usuario el reporte de los resultados, además de otras funcionalidades que le permitan la navegación por los sectores del código que han sido modificados como efecto colateral de la edición de la cinta magnética original. Otro objetivo importante del proyecto ha sido la investigación de metodologías y técnicas de desarrollo de software para su posterior implementación, buscando con esto, una mayor eficiencia en la gestión del tiempo y una mayor calidad de software con el fin de garantizar su evolución y sostenibilidad en el futuro. Se ha hecho hincapié en las metodologías ágiles que han ido ganando relevancia en el sector de las tecnologías de la información en las últimas décadas, sustituyendo a metodologías clásicas como el desarrollo en cascada. Su flexibilidad durante el ciclo de vida del software, permite obtener mejores resultados cuando las especificaciones no están del todo definidas, ajustándose de este modo a las condiciones del proyecto. Resumiendo las especificaciones técnicas del software, C++ es el lenguaje de programación orientado a objetos con el que se ha desarrollado, utilizándose la tecnología MFC -Microsoft Foundation Classes- para la implementación. Es un proyecto MFC de tipo cuadro de dialogo,creado, compilado y publicado, con la herramienta de desarrollo integrado Microsoft Visual Studio 2010. La arquitectura con la que se ha estructurado es la arquetípica de tres capas, compuesta por la interfaz de usuario, capa de negocio y capa de acceso a datos. Se ha visto necesario configurar el proyecto con compatibilidad con CLR –Common Languages Runtime- para poder implementar la funcionalidad de creación de reportes. Acompañando a la aplicación informática, se presenta la memoria del proyecto y sus anexos correspondientes a los documentos EDRF –Especificaciones Detalladas de Requisitos funcionales-, EIU –Especificaciones de Interfaz de Usuario , DT -Diseño Técnico- y Guía de Usuario. SUMMARY. This dissertation, carried out by the telecommunications engineer Pedro M. Matamala Lucas, is in its final stage and is part of a larger project for the software of forensic video called SAVID. The purpose of the entire project is the creation of a software tool capable of analyzing video files that are coded and compressed by the DV -Digital Video- System. The objective of the analysis is to provide information on whether the magnetic tape shows signs of having been tampered with after the editing of the original recording, and also to show the user other relevant data and technical specifications of the video signal and audio. Therefore the user, forensic video analyst, will have information to help assess the originality of the content of the media that is subject to analysis. The specific objective of this final phase is the creation of the user interface of the software that provides information about the binary code of the significant sectors and also its interpretation after analysis. It will also allow the user to report the results, and other features that will allow browsing through the sections of the code that have been modified as a secondary effect of the original magnetic tape being tampered. Another important objective of the project is the investigation of methodologies and software development techniques to be used in deployment, with the aim of greater efficiency in time management and enhanced software quality in order to ensure its development and maintenance in the future. Agile methodologies, which have become important in the field of information technology in recent decades, have been used during the execution of the project, replacing classical methodologies such as Waterfall Development. The flexibility, as the result of using by agile methodologies, during the software life cycle, produces better results when the specifications are not fully defined, thus conforming to the initial conditions of the project. Summarizing the software technical specifications, C + + the programming language – which is object oriented and has been developed using technology MFC- Microsoft Foundation Classes for implementation. It is a project type dialog box, created, compiled and released with the integrated development tool Microsoft Visual Studio 2010. The architecture is structured in three layers: the user interface, business layer and data access layer. It has been necessary to configure the project with the support CLR -Common Languages Runtime – in order to implement the reporting functionality. The software application is submitted with the project report and its annexes to the following documents: Functional Requirements Specifications - Detailed User Interface Specifications, Technical Design and User Guide.
Resumo:
Due to dynamic variability, identifying the specific conditions under which non-functional requirements (NFRs) are satisfied may be only possible at runtime. Therefore, it is necessary to consider the dynamic treatment of relevant information during the requirements specifications. The associated data can be gathered by monitoring the execution of the application and its underlying environment to support reasoning about how the current application configuration is fulfilling the established requirements. This paper presents a dynamic decision-making infrastructure to support both NFRs representation and monitoring, and to reason about the degree of satisfaction of NFRs during runtime. The infrastructure is composed of: (i) an extended feature model aligned with a domain-specific language for representing NFRs to be monitored at runtime; (ii) a monitoring infrastructure to continuously assess NFRs at runtime; and (iii) a exible decision-making process to select the best available configuration based on the satisfaction degree of the NRFs. The evaluation of the approach has shown that it is able to choose application configurations that well fit user NFRs based on runtime information. The evaluation also revealed that the proposed infrastructure provided consistent indicators regarding the best application configurations that fit user NFRs. Finally, a benefit of our approach is that it allows us to quantify the level of satisfaction with respect to NFRs specification.
Resumo:
Requirements specification has long been recognized as critical activity in software development processes because of its impact on project risks when poorly performed. A large amount of studies addresses theoretical aspects, propositions of techniques, and recommended practices for Requirements Engineering (RE). To be successful, RE have to ensure that the specified requirements are complete and correct what means that all intents of the stakeholders in a given business context are covered by the requirements and that no unnecessary requirement was introduced. However, the accurate capture the business intents of the stakeholders remains a challenge and it is a major factor of software project failures. This master’s dissertation presents a novel method referred to as “Problem-Based SRS” aiming at improving the quality of the Software Requirements Specification (SRS) in the sense that the stated requirements provide suitable answers to real customer ́s businesses issues. In this approach, the knowledge about the software requirements is constructed from the knowledge about the customer ́s problems. Problem-Based SRS consists in an organization of activities and outcome objects through a process that contains five main steps. It aims at supporting the software requirements engineering team to systematically analyze the business context and specify the software requirements, taking also into account a first glance and vision of the software. The quality aspects of the specifications are evaluated using traceability techniques and axiomatic design principles. The cases studies conducted and presented in this document point out that the proposed method can contribute significantly to improve the software requirements specification.
Resumo:
The activity of validating identified requirements for an information system helps to improve the quality of a requirements specification document and, consequently, the success of a project. Although various different support tools to requirements engineering exist in the market, there is still a lack of automated support for validation activity. In this context, the purpose of this paper is to make up for that deficiency, with the use of an automated tool, to provide the resources for the execution of an adequate validation activity. The contribution of this study is to enable an agile and effective follow-up of the scope established for the requirements, so as to lead the development to a solution which would satisfy the real necessities of the users, as well as to supply project managers with relevant information about the maturity of the analysts involved in requirements specification.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
The front end of innovation is regarded as one of the most important steps in building new software products or services, and the most significant benefits in software development can be achieved through improvements in the front end activities. Problems in the front end phase have an impact on customer dissatisfaction with delivered software, and on the effectiveness of the entire software development process. When these processes are improved, the likelihood of delivering high quality software and business success increases. This thesis highlights the challenges and problems related to the early phases of software development, and provides new methods and tools for improving performance in the front end activities of software development. The theoretical framework of this study comprises two fields of research. The first section belongs to the field of innovation management, and especially to the management of the early phases of the innovation process, i.e. the front end of innovation. The second section of the framework is closely linked to the processes of software engineering, especially to the early phases of the software development process, i.e. the practice of requirements engineering. Thus, this study extends the theoretical knowledge and discloses the differences and similarities in these two fields of research. In addition, this study opens up a new strand for academic discussion by connecting these research directions. Several qualitative business research methodologies have been utilized in the individual publications to solve the research questions. The theoretical and managerial contribution of the study can be divided into three areas: 1) processes and concepts, 2) challenges and development needs, and 3) means and methods for the front end activities of software development. First, the study discloses the difference and similarities between the concepts of the front end of innovation and requirements engineering, and proposes a new framework for managing the front end of the software innovation process, bringing business and innovation perspectives into software development. Furthermore, the study discloses managerial perceptions of the similarities and differences in the concept of the front end of innovation between the software industry and the traditional industrial sector. Second, the study highlights the challenges and development needs in the front end phase of software development, especially challenges in communication, such as linguistic problems, ineffective communication channels, a communication gap between users/customers and software developers, and participation of multiple persons in software development. Third, the study proposes new group methods for improving the front end activities of software development, especially customer need assessment, and the elicitation of software requirements.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.