981 resultados para Software metrics
Resumo:
Software evolution, and particularly its growth, has been mainly studied at the file (also sometimes referred as module) level. In this paper we propose to move from the physical towards a level that includes semantic information by using functions or methods for measuring the evolution of a software system. We point out that use of functions-based metrics has many advantages over the use of files or lines of code. We demonstrate our approach with an empirical study of two Free/Open Source projects: a community-driven project, Apache, and a company-led project, Novell Evolution. We discovered that most functions never change; when they do their number of modifications is correlated with their size, and that very few authors who modify each; finally we show that the departure of a developer from a software project slows the evolution of the functions that she authored.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.
Resumo:
Measuring quality attributes of object-oriented designs (e.g. maintainability and performance) has been covered by a number of studies. However, these studies have not considered security as much as other quality attributes. Also, most security studies focus at the level of individual program statements. This approach makes it hard and expensive to discover and fix vulnerabilities caused by design errors. In this work, we focus on the security design of an object oriented application and define a number of security metrics. These metrics allow designers to discover and fix security vulnerabilities at an early stage, and help compare the security of various alternative designs. In particular, we propose seven security metrics to measure Data Encapsulation (accessibility) and Cohesion (interactions) of a given object-oriented class from the point of view of potential information flow.
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.
Resumo:
The detection and correction of defects remains among the most time consuming and expensive aspects of software development. Extensive automated testing and code inspections may mitigate their effect, but some code fragments are necessarily more likely to be faulty than others, and automated identification of fault prone modules helps to focus testing and inspections, thus limiting wasted effort and potentially improving detection rates. However, software metrics data is often extremely noisy, with enormous imbalances in the size of the positive and negative classes. In this work, we present a new approach to predictive modelling of fault proneness in software modules, introducing a new feature representation to overcome some of these issues. This rank sum representation offers improved or at worst comparable performance to earlier approaches for standard data sets, and readily allows the user to choose an appropriate trade-off between precision and recall to optimise inspection effort to suit different testing environments. The method is evaluated using the NASA Metrics Data Program (MDP) data sets, and performance is compared with existing studies based on the Support Vector Machine (SVM) and Naïve Bayes (NB) Classifiers, and with our own comprehensive evaluation of these methods.
Resumo:
Although there are many approaches for developing secure programs, they are not necessarily helpful for evaluating the security of a pre-existing program. Software metrics promise an easy way of comparing the relative security of two programs or assessing the security impact of modifications to an existing one. Most studies in this area focus on high level source code but this approach fails to take compiler-specific code generation into account. In this work we describe a set of object-oriented Java bytecode security metrics which are capable of assessing the security of a compiled program from the point of view of potential information flow. These metrics can be used to compare the security of programs or assess the effect of program modifications on security using a tool which we have developed to automatically measure the security of a given Java bytecode program in terms of the accessibility of distinguished ‘classified’ attributes.
Resumo:
Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.
Using simulation to determine the sensibility of error sources for software effort estimation models
Resumo:
Software metrics offer us the promise of distilling useful information from vast amounts of software in order to track development progress, to gain insights into the nature of the software, and to identify potential problems. Unfortunately, however, many software metrics exhibit highly skewed, non-Gaussian distributions. As a consequence, usual ways of interpreting these metrics --- for example, in terms of "average" values --- can be highly misleading. Many metrics, it turns out, are distributed like wealth --- with high concentrations of values in selected locations. We propose to analyze software metrics using the Gini coefficient, a higher-order statistic widely used in economics to study the distribution of wealth. Our approach allows us not only to observe changes in software systems efficiently, but also to assess project risks and monitor the development process itself. We apply the Gini coefficient to numerous metrics over a range of software projects, and we show that many metrics not only display remarkably high Gini values, but that these values are remarkably consistent as a project evolves over time.
Resumo:
When analysing software metrics, users find that visualisation tools lack support for (1) the detection of patterns within metrics; and (2) enabling analysis of software corpora. In this paper we present Explora, a visualisation tool designed for the simultaneous analysis of multiple metrics of systems in software corpora. Explora incorporates a novel lightweight visualisation technique called PolyGrid that promotes the detection of graphical patterns. We present an example where we analyse the relation of subtype polymorphism with inheritance and invocation in corpora of Smalltalk and Java systems and find that (1) subtype polymorphism is more likely to be found in large hierarchies; (2) as class hierarchies grow horizontally, they also do so vertically; and (3) in polymorphic hierarchies the length of the name of the classes is orthogonal to the cardinality of the call sites.
Resumo:
The reasonable choice is a critical success factor for decision- making in the field of software engineering (SE). A case-driven comparative analysis has been introduced and a procedure for its systematic application has been suggested. The paper describes how the proposed method can be built in a general framework for SE activities. Some examples of experimental versions of the framework are brie y presented.