948 resultados para Software Testing
Resumo:
Jatkuvasti lisääntyvä matkapuhelinten käyttäjien määrä, internetin kehittyminen yleiseksi tiedon ja viihteen lähteeksi on luonut tarpeen palvelulle liikkuvan työaseman liittämiseksi tietokoneverkkoihin. GPRS on uusi teknologia, joka tarjoaa olemassa olevia matka- puhelinverkkoja (esim. NMT ja GSM) nopeamman, tehokkaamman ja taloudellisemman liitynnän pakettidataverkkoihin, kuten internettiin ja intranetteihin. Tämän työn tavoitteena oli toteuttaa GPRS:n paketinohjausyksikön (Packet Control Unit, PCU) testauksessa tarvittavat viestintäajurit työasemaympristöön. Aidot matkapuhelinverkot ovat liian kalliita, eikä niistä saa tarvittavasti lokitulostuksia, jotta niitä voisi käyttää GPRS:n testauksessa ohjelmiston kehityksen alkuvaihessa. Tämän takia PCU-ohjelmiston testaus suoritetaan joustavammassa ja helpommin hallittavassa ympäristössä, joka ei aseta kovia reaaliaikavaatimuksia. Uusi toimintaympäristö ja yhteysmedia vaativat PCU:n ja muiden GPRS-verkon yksiköiden välisistä yhteyksistä huolehtivien ohjelman osien, viestintäajurien uuden toteutuksen. Tämän työn tuloksena syntyivät tarvittavien viestintäajurien työasemaversiot. Työssä tarkastellaan eri tiedonsiirtotapoja ja -protokollia testattavan ohjelmiston vaateiden, toteutetun ajurin ja testauksen kannalta. Työssä esitellään kunkin ajurin toteuttama rajapinta ja toteutuksen aste, eli mitkä toiminnot on toteutettu ja mitä on jätetty pois. Ajureiden rakenne ja toiminta selvitetään siltä osin, kuin se on oleellista ohjelman toiminnan kannalta.
Resumo:
Where the creation, understanding, and assessment of software testing and regression testing techniques are concerned, controlled experimentation is an indispensable research methodology. Obtaining the infrastructure necessary to support such experimentation, however, is difficult and expensive. As a result, progress in experimentation with testing techniques has been slow, and empirical data on the costs and effectiveness of techniques remains relatively scarce. To help address this problem, we have been designing and constructing infrastructure to support controlled experimentation with testing and regression testing techniques. This paper reports on the challenges faced by researchers experimenting with testing techniques, including those that inform the design of our infrastructure. The paper then describes the infrastructure that we are creating in response to these challenges, and that we are now making available to other researchers, and discusses the impact that this infrastructure has and can be expected to have.
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
We have designed and implemented a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our approach is that a unified assertion language is used for all of these tasks. We first propose methods for compiling runtime checks for (parts of) assertions which cannot be verified at compile-time via program transformation. This transformation allows checking preconditions and postconditions, including conditional postconditions, properties at arbitrary program points, and certain computational properties. The implemented transformation includes several optimizations to reduce run-time overhead. We also propose a minimal addition to the assertion language which allows defining unit tests to be run in order to detect possible violations of the (partial) specifications expressed by the assertions. This language can express for example the input data for performing the unit tests or the number of times that the unit tests should be repeated. We have implemented the framework within the Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog compliance and to the detection of different types of bugs in the Ciao system source code. Several experimental results are presented that ¡Ilústrate different trade-offs among program size, running time, or levéis of verbosity of the messages shown to the user.
Resumo:
Software testing is a key aspect of software reliability and quality assurance in a context where software development constantly has to overcome mammoth challenges in a continuously changing environment. One of the characteristics of software testing is that it has a large intellectual capital component and can thus benefit from the use of the experience gained from past projects. Software testing can, then, potentially benefit from solutions provided by the knowledge management discipline. There are in fact a number of proposals concerning effective knowledge management related to several software engineering processes. Objective: We defend the use of a lesson learned system for software testing. The reason is that such a system is an effective knowledge management resource enabling testers and managers to take advantage of the experience locked away in the brains of the testers. To do this, the experience has to be gathered, disseminated and reused. Method: After analyzing the proposals for managing software testing experience, significant weaknesses have been detected in the current systems of this type. The architectural model proposed here for lesson learned systems is designed to try to avoid these weaknesses. This model (i) defines the structure of the software testing lessons learned; (ii) sets up procedures for lesson learned management; and (iii) supports the design of software tools to manage the lessons learned. Results: A different approach, based on the management of the lessons learned that software testing engineers gather from everyday experience, with two basic goals: usefulness and applicability. Conclusion: The architectural model proposed here lays the groundwork to overcome the obstacles to sharing and reusing experience gained in the software testing and test management. As such, it provides guidance for developing software testing lesson learned systems.
Resumo:
We have designed and implemented a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our approach is that a unified assertion language is used for all of these tasks. We first propose methods for compiling runtime checks for (parts of) assertions which cannot be verified at compile-time via program transformation. This transformation allows checking preconditions and postconditions, including conditional postconditions, properties at arbitrary program points, and certain computational properties. The implemented transformation includes several optimizations to reduce run-time overhead. We also propose a minimal addition to the assertion language which allows defining unit tests to be run in order to detect possible violations of the (partial) specifications expressed by the assertions. This language can express for example the input data for performing the unit tests or the number of times that the unit tests should be repeated. We have implemented the framework within the Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog compliance and to the detection of different types of bugs in the Ciao system source code. Several experimental results are presented that illustrate different trade-offs among program size, running time, or levels of verbosity of the messages shown to the user.
Resumo:
This paper arises out of a research study into the online help facilities provided in popular software applications such as word processors. Its particular focus is on experimental methods of evaluating the effectiveness and usability of those facilities. Focus groups, questionnaires, and online surveys had already been used in other phases of the study, but it was judged that these approaches would be unsuitable for measuring effectiveness and usability because they are susceptible to respondents' subjectivity. Direct observation of people working on set word-processing tasks was ruled out initially because of a lack of trained observers; it would have taken too long for the investigator to observe a large enough sample by himself. Automatic recording of users' actions was also rejected, as it would have demanded equipment and/or software that was not available and seemed too expensive to acquire. The approach and techniques described here were an attempt to overcome these difficulties by using observers drawn from the same population of students that provided the test subjects; as a by-product, this may also have enhanced the acceptability (and hence possibly the validity) of the experiments by reducing the exam pressure perceived by participants.
Resumo:
Achieving consistency between a specification and its implementation is an important part of software development. In this paper, we present a method for generating passive test oracles that act as self-checking implementations. The implementation is verified using an animation tool to check that the behavior of the implementation matches the behavior of the specification. We discuss how to integrate this method into a framework developed for systematically animating specifications, which means a tester can significantly reduce testing time and effort by reusing work products from the animation. One such work product is a testgraph: a directed graph that partially models the states and transitions of the specification. Testgraphs are used to generate sequences for animation, and during testing, to execute these same sequences on the implementation.
Resumo:
This article describes some approaches to problem of testing and documenting automation in information systems with graphical user interface. Combination of data mining methods and theory of finite state machines is used for testing automation. Automated creation of software documentation is based on using metadata in documented system. Metadata is built on graph model. Described approaches improve performance and quality of testing and documenting processes.
Resumo:
Large component-based systems are often built from many of the same components. As individual component-based software systems are developed, tested and maintained, these shared components are repeatedly manipulated. As a result there are often significant overlaps and synergies across and among the different test efforts of different component-based systems. However, in practice, testers of different systems rarely collaborate, taking a test-all-by-yourself approach. As a result, redundant effort is spent testing common components, and important information that could be used to improve testing quality is lost. The goal of this research is to demonstrate that, if done properly, testers of shared software components can save effort by avoiding redundant work, and can improve the test effectiveness for each component as well as for each component-based software system by using information obtained when testing across multiple components. To achieve this goal I have developed collaborative testing techniques and tools for developers and testers of component-based systems with shared components, applied the techniques to subject systems, and evaluated the cost and effectiveness of applying the techniques. The dissertation research is organized in three parts. First, I investigated current testing practices for component-based software systems to find the testing overlap and synergy we conjectured exists. Second, I designed and implemented infrastructure and related tools to facilitate communication and data sharing between testers. Third, I designed two testing processes to implement different collaborative testing algorithms and applied them to large actively developed software systems. This dissertation has shown the benefits of collaborative testing across component developers who share their components. With collaborative testing, researchers can design algorithms and tools to support collaboration processes, achieve better efficiency in testing configurations, and discover inter-component compatibility faults within a minimal time window after they are introduced.
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.
Resumo:
Model-based testing (MBT) relies on models of a system under test and/or its environment to derive test cases for the system. This paper discusses the process of MBT and defines a taxonomy that covers the key aspects of MBT approaches. It is intended to help with understanding the characteristics, similarities and differences of those approaches, and with classifying the approach used in a particular MBT tool. To illustrate the taxonomy, a description of how three different examples of MBT tools fit into the taxonomy is provided.