974 resultados para Software Development Tools
Resumo:
Item 247.
Resumo:
Automated and semi-automated accessibility evaluation tools are key to streamline the process of accessibility assessment, and ultimately ensure that software products, contents, and services meet accessibility requirements. Different evaluation tools may better fit different needs and concerns, accounting for a variety of corporate and external policies, content types, invocation methods, deployment contexts, exploitation models, intended audiences and goals; and the specific overall process where they are introduced. This has led to the proliferation of many evaluation tools tailored to specific contexts. However, tool creators, who may be not familiar with the realm of accessibility and may be part of a larger project, lack any systematic guidance when facing the implementation of accessibility evaluation functionalities. Herein we present a systematic approach to the development of accessibility evaluation tools, leveraging the different artifacts and activities of a standardized development process model (the Unified Software Development Process), and providing templates of these artifacts tailored to accessibility evaluation tools. The work presented specially considers the work in progress in this area by the W3C/WAI Evaluation and Report Working Group (ERT WG)
Resumo:
Software integration is a stage in a software development process to assemble separate components to produce a single product. It is important to manage the risks involved and being able to integrate smoothly, because software cannot be released without integrating it first. Furthermore, it has been shown that the integration and testing phase can make up 40 % of the overall project costs. These issues can be mitigated by using a software engineering practice called continuous integration. This thesis work presents how continuous integration is introduced to the author's employer organisation. This includes studying how the continuous integration process works and creating the technical basis to start using the process on future projects. The implemented system supports software written in C and C++ programming languages on Linux platform, but the general concepts can be applied to any programming language and platform by selecting the appropriate tools. The results demonstrate in detail what issues need to be solved when the process is acquired in a corporate environment. Additionally, they provide an implementation and process description suitable to the organisation. The results show that continuous integration can reduce the risks involved in a software process and increase the quality of the product as well.
Resumo:
The front end of innovation is regarded as one of the most important steps in building new software products or services, and the most significant benefits in software development can be achieved through improvements in the front end activities. Problems in the front end phase have an impact on customer dissatisfaction with delivered software, and on the effectiveness of the entire software development process. When these processes are improved, the likelihood of delivering high quality software and business success increases. This thesis highlights the challenges and problems related to the early phases of software development, and provides new methods and tools for improving performance in the front end activities of software development. The theoretical framework of this study comprises two fields of research. The first section belongs to the field of innovation management, and especially to the management of the early phases of the innovation process, i.e. the front end of innovation. The second section of the framework is closely linked to the processes of software engineering, especially to the early phases of the software development process, i.e. the practice of requirements engineering. Thus, this study extends the theoretical knowledge and discloses the differences and similarities in these two fields of research. In addition, this study opens up a new strand for academic discussion by connecting these research directions. Several qualitative business research methodologies have been utilized in the individual publications to solve the research questions. The theoretical and managerial contribution of the study can be divided into three areas: 1) processes and concepts, 2) challenges and development needs, and 3) means and methods for the front end activities of software development. First, the study discloses the difference and similarities between the concepts of the front end of innovation and requirements engineering, and proposes a new framework for managing the front end of the software innovation process, bringing business and innovation perspectives into software development. Furthermore, the study discloses managerial perceptions of the similarities and differences in the concept of the front end of innovation between the software industry and the traditional industrial sector. Second, the study highlights the challenges and development needs in the front end phase of software development, especially challenges in communication, such as linguistic problems, ineffective communication channels, a communication gap between users/customers and software developers, and participation of multiple persons in software development. Third, the study proposes new group methods for improving the front end activities of software development, especially customer need assessment, and the elicitation of software requirements.
Resumo:
Dagens programvaruindustri står inför alltmer komplicerade utmaningar i en värld där programvara är nästan allstädes närvarande i våra dagliga liv. Konsumenten vill ha produkter som är pålitliga, innovativa och rika i funktionalitet, men samtidigt också förmånliga. Utmaningen för oss inom IT-industrin är att skapa mer komplexa, innovativa lösningar till en lägre kostnad. Detta är en av orsakerna till att processförbättring som forskningsområde inte har minskat i betydelse. IT-proffs ställer sig frågan: “Hur håller vi våra löften till våra kunder, samtidigt som vi minimerar vår risk och ökar vår kvalitet och produktivitet?” Inom processförbättringsområdet finns det olika tillvägagångssätt. Traditionella processförbättringsmetoder för programvara som CMMI och SPICE fokuserar på kvalitets- och riskaspekten hos förbättringsprocessen. Mer lättviktiga metoder som t.ex. lättrörliga metoder (agile methods) och Lean-metoder fokuserar på att hålla löften och förbättra produktiviteten genom att minimera slöseri inom utvecklingsprocessen. Forskningen som presenteras i denna avhandling utfördes med ett specifikt mål framför ögonen: att förbättra kostnadseffektiviteten i arbetsmetoderna utan att kompromissa med kvaliteten. Den utmaningen attackerades från tre olika vinklar. För det första förbättras arbetsmetoderna genom att man introducerar lättrörliga metoder. För det andra bibehålls kvaliteten genom att man använder mätmetoder på produktnivå. För det tredje förbättras kunskapsspridningen inom stora företag genom metoder som sätter samarbete i centrum. Rörelsen bakom lättrörliga arbetsmetoder växte fram under 90-talet som en reaktion på de orealistiska krav som den tidigare förhärskande vattenfallsmetoden ställde på IT-branschen. Programutveckling är en kreativ process och skiljer sig från annan industri i det att den största delen av det dagliga arbetet går ut på att skapa något nytt som inte har funnits tidigare. Varje programutvecklare måste vara expert på sitt område och använder en stor del av sin arbetsdag till att skapa lösningar på problem som hon aldrig tidigare har löst. Trots att detta har varit ett välkänt faktum redan i många decennier, styrs ändå många programvaruprojekt som om de vore produktionslinjer i fabriker. Ett av målen för rörelsen bakom lättrörliga metoder är att lyfta fram just denna diskrepans mellan programutvecklingens innersta natur och sättet på vilket programvaruprojekt styrs. Lättrörliga arbetsmetoder har visat sig fungera väl i de sammanhang de skapades för, dvs. små, samlokaliserade team som jobbar i nära samarbete med en engagerad kund. I andra sammanhang, och speciellt i stora, geografiskt utspridda företag, är det mera utmanande att införa lättrörliga metoder. Vi har nalkats utmaningen genom att införa lättrörliga metoder med hjälp av pilotprojekt. Detta har två klara fördelar. För det första kan man inkrementellt samla kunskap om metoderna och deras samverkan med sammanhanget i fråga. På så sätt kan man lättare utveckla och anpassa metoderna till de specifika krav som sammanhanget ställer. För det andra kan man lättare överbrygga motstånd mot förändring genom att introducera kulturella förändringar varsamt och genom att målgruppen får direkt förstahandskontakt med de nya metoderna. Relevanta mätmetoder för produkter kan hjälpa programvaruutvecklingsteam att förbättra sina arbetsmetoder. När det gäller team som jobbar med lättrörliga och Lean-metoder kan en bra uppsättning mätmetoder vara avgörande för beslutsfattandet när man prioriterar listan över uppgifter som ska göras. Vårt fokus har legat på att stöda lättrörliga och Lean-team med interna produktmätmetoder för beslutsstöd gällande så kallad omfaktorering, dvs. kontinuerlig kvalitetsförbättring av programmets kod och design. Det kan vara svårt att ta ett beslut att omfaktorera, speciellt för lättrörliga och Lean-team, eftersom de förväntas kunna rättfärdiga sina prioriteter i termer av affärsvärde. Vi föreslår ett sätt att mäta designkvaliteten hos system som har utvecklats med hjälp av det så kallade modelldrivna paradigmet. Vi konstruerar även ett sätt att integrera denna mätmetod i lättrörliga och Lean-arbetsmetoder. En viktig del av alla processförbättringsinitiativ är att sprida kunskap om den nya programvaruprocessen. Detta gäller oavsett hurdan process man försöker introducera – vare sig processen är plandriven eller lättrörlig. Vi föreslår att metoder som baserar sig på samarbete när processen skapas och vidareutvecklas är ett bra sätt att stöda kunskapsspridning på. Vi ger en översikt över författarverktyg för processer på marknaden med det förslaget i åtanke.
Resumo:
Formal software development processes and well-defined development methodologies are nowadays seen as the definite way to produce high-quality software within time-limits and budgets. The variety of such high-level methodologies is huge ranging from rigorous process frameworks like CMMI and RUP to more lightweight agile methodologies. The need for managing this variety and the fact that practically every software development organization has its own unique set of development processes and methods have created a profession of software process engineers. Different kinds of informal and formal software process modeling languages are essential tools for process engineers. These are used to define processes in a way which allows easy management of processes, for example process dissemination, process tailoring and process enactment. The process modeling languages are usually used as a tool for process engineering where the main focus is on the processes themselves. This dissertation has a different emphasis. The dissertation analyses modern software development process modeling from the software developers’ point of view. The goal of the dissertation is to investigate whether the software process modeling and the software process models aid software developers in their day-to-day work and what are the main mechanisms for this. The focus of the work is on the Software Process Engineering Metamodel (SPEM) framework which is currently one of the most influential process modeling notations in software engineering. The research theme is elaborated through six scientific articles which represent the dissertation research done with process modeling during an approximately five year period. The research follows the classical engineering research discipline where the current situation is analyzed, a potentially better solution is developed and finally its implications are analyzed. The research applies a variety of different research techniques ranging from literature surveys to qualitative studies done amongst software practitioners. The key finding of the dissertation is that software process modeling notations and techniques are usually developed in process engineering terms. As a consequence the connection between the process models and actual development work is loose. In addition, the modeling standards like SPEM are partially incomplete when it comes to pragmatic process modeling needs, like light-weight modeling and combining pre-defined process components. This leads to a situation, where the full potential of process modeling techniques for aiding the daily development activities can not be achieved. Despite these difficulties the dissertation shows that it is possible to use modeling standards like SPEM to aid software developers in their work. The dissertation presents a light-weight modeling technique, which software development teams can use to quickly analyze their work practices in a more objective manner. The dissertation also shows how process modeling can be used to more easily compare different software development situations and to analyze their differences in a systematic way. Models also help to share this knowledge with others. A qualitative study done amongst Finnish software practitioners verifies the conclusions of other studies in the dissertation. Although processes and development methodologies are seen as an essential part of software development, the process modeling techniques are rarely used during the daily development work. However, the potential of these techniques intrigues the practitioners. As a conclusion the dissertation shows that process modeling techniques, most commonly used as tools for process engineers, can also be used as tools for organizing the daily software development work. This work presents theoretical solutions for bringing the process modeling closer to the ground-level software development activities. These theories are proven feasible by presenting several case studies where the modeling techniques are used e.g. to find differences in the work methods of the members of a software team and to share the process knowledge to a wider audience.
Resumo:
The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.
Resumo:
ALICE, that is an experiment held at CERN using the LHC, is specialized in analyzing lead-ion collisions. ALICE will study the properties of quarkgluon plasma, a state of matter where quarks and gluons, under conditions of very high temperatures and densities, are no longer confined inside hadrons. Such a state of matter probably existed just after the Big Bang, before particles such as protons and neutrons were formed. The SDD detector, one of the ALICE subdetectors, is part of the ITS that is composed by 6 cylindrical layers with the innermost one attached to the beam pipe. The ITS tracks and identifies particles near the interaction point, it also aligns the tracks of the articles detected by more external detectors. The two ITS middle layers contain the whole 260 SDD detectors. A multichannel readout board, called CARLOSrx, receives at the same time the data coming from 12 SDD detectors. In total there are 24 CARLOSrx boards needed to read data coming from all the SDD modules (detector plus front end electronics). CARLOSrx packs data coming from the front end electronics through optical link connections, it stores them in a large data FIFO and then it sends them to the DAQ system. Each CARLOSrx is composed by two boards. One is called CARLOSrx data, that reads data coming from the SDD detectors and configures the FEE; the other one is called CARLOSrx clock, that sends the clock signal to all the FEE. This thesis contains a description of the hardware design and firmware features of both CARLOSrx data and CARLOSrx clock boards, which deal with all the SDD readout chain. A description of the software tools necessary to test and configure the front end electronics will be presented at the end of the thesis.
Resumo:
Agile methodologies have become the standard approach to software development. The most popular and used one is Scrum. Scrum is a very simple and flexible framework that respond to unpredictability in a really effective way. However, his implementation must be correct, and since Scrum tells you what to do but not how to do it, this is not trivial. In this thesis I will describe the Scrum Framework, how to implement it and a tool that can help to do this. The thesis is divided into three parts. The first part is called Scrum. Here I will introduce the framework itself, its key concepts and its components. In Scrum there are three components: roles, meetings and artifacts. Each of these is meant to accomplish a series of specific tasks. After describing the “what to do”, in the second part, Best Practices, I will focus on the “how to do it”. For example, how to decide which items should be included in the next sprint, how to estimate tasks, and how should the team workspace be. Finally, in the third part called Tools, I will introduce Visual Studio Online, a cloud service from Microsoft that offers Git and TFVC repositories and the opportunity to manage projects with Scrum. == Versione italiana: I metodi Agile sono diventati l’approccio standard per lo sviluppo di software. Il più famoso ed utilizzato è Scrum. Scrum è un framework molto semplice e flessibile che risponde ai cambiamenti in una maniera molto efficace. La sua implementazione deve però essere corretta, e visto che Scrum ci dice cosa fare ma non come farlo, questo non risulta essere immediato. In questa tesi descriverò Scrum, come implementarlo ed uno strumento che ci può aiutare a farlo. La tesi è divisa in tre parti. La prima parte è chiamata Scrum. Qui introdurrò il framework, i suoi concetti base e le sue componenti. In Scrum ci sono tre componenti: i ruoli, i meeting e gli artifact. Ognuno di questi è studiato per svolgere una serie di compiti specifici. Dopo aver descritto il “cosa fare”, nella seconda parte, Best Practices, mi concentrerò sul “come farlo”. Ad esempio, come decidere quali oggetti includere nella prossima sprint, come stimare ogni task e come dovrebbe essere il luogo di lavoro del team. Infine, nella terza parte chiamata Tools, introdurrò Visual Studio Online, un servizio cloud della Microsoft che offre repository Git e TFVC e l’opportunità di gestire un progetto con Scrum.
Resumo:
The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.
Resumo:
This paper describes some important aspects of high- integrity software development based on the authors' work. Current group research is oriented towards mixed- criticality partitioned systems, development tools, real- time kernels, and language features. The UPMSat-2 satellite software is being used as technology demonstra- tor and a case study for the assessment of the research results. The flight software that will run on the satellite is based on proven technology, such as GNAT/ORK+ and LEON3. There is an experimental version that is being built using a partitioned approach, aiming at assessing a toolset targeting partitioned multi-core em- bedded systems. The singularities of both approaches are discussed, as well as some of the tools that are being used for developing the software.
Resumo:
Context: Today’s project managers have a myriad of methods to choose from for the development of software applications. However, they lack empirical data about the character of these methods in terms of usefulness, ease of use or compatibility, all of these being relevant variables to assess the developer’s intention to use them. Objective: To compare three methods, each following a different paradigm (Model-Driven, Model-Based and Code-Centric) with respect to their adoption potential by junior software developers engaged in the development of the business layer of a Web 2.0 application. Method: We have conducted a quasi-experiment with 26 graduate students of the University of Alicante. The application developed was a Social Network, which was organized around a fixed set of modules. Three of them, similar in complexity, were used for the experiment. Subjects were asked to use a different method for each module, and then to answer a questionnaire that gathered their perceptions during such use. Results: The results show that the Model-Driven method is regarded as the most useful, although it is also considered the least compatible with previous developers’ experiences. They also show that junior software developers feel comfortable with the use of models, and that they are likely to use them if the models are accompanied by a Model-Driven development environment. Conclusions: Despite their relatively low level of compatibility, Model-Driven development methods seem to show a great potential for adoption. That said, however, further experimentation is needed to make it possible to generalize the results to a different population, different methods, other languages and tools, different domains or different application sizes.
Resumo:
Context: Global Software Development (GSD) allows companies to take advantage of talent spread across the world. Most research has been focused on the development aspect. However, little if any attention has been paid to the management of GSD projects. Studies report a lack of adequate support for management’s decisions made during software development, further accentuated in GSD since information is scattered throughout multiple factories, stored in different formats and standards. Objective: This paper aims to improve GSD management by proposing a systematic method for adapting Business Intelligence techniques to software development environments. This would enhance the visibility of the development process and enable software managers to make informed decisions regarding how to proceed with GSD projects. Method: A combination of formal goal-modeling frameworks and data modeling techniques is used to elicitate the most relevant aspects to be measured by managers in GSD. The process is described in detail and applied to a real case study throughout the paper. A discussion regarding the generalisability of the method is presented afterwards. Results: The application of the approach generates an adapted BI framework tailored to software development according to the requirements posed by GSD managers. The resulting framework is capable of presenting previously inaccessible data through common and specific views and enabling data navigation according to the organization of software factories and projects in GSD. Conclusions: We can conclude that the proposed systematic approach allows us to successfully adapt Business Intelligence techniques to enhance GSD management beyond the information provided by traditional tools. The resulting framework is able to integrate and present the information in a single place, thereby enabling easy comparisons across multiple projects and factories and providing support for informed decisions in GSD management.
Resumo:
Developers commonly ask detailed and domain-specific questions about the software systems they are developing and maintaining. Integrated development environments (IDEs) form an essential category of tools for developing software that should support software engineering decision making. Unfortunately, rigid and generic IDEs that focus on low-level programming tasks, that promote code rather than data, and that suppress customization, offer limited support for informed decision making during software development. We propose to improve decision making within IDEs by moving from generic to context-aware IDEs through moldable tools. In this paper, we promote the idea of moldable tools, illustrate it with concrete examples, and discuss future research directions.