997 resultados para Soft sensor


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viscosity represents a key indicator of product quality in polymer extrusion but has traditionally been difficult to measure in-process in real-time. An innovative, yet simple, solution to this problem is proposed by a Prediction-Feedback observer mechanism. A `Prediction' model based on the operating conditions generates an open-loop estimate of the melt viscosity; this estimate is used as an input to a second, `Feedback' model to predict the pressure of the system. The pressure value is compared to the actual measured melt pressure and the error used to correct the viscosity estimate. The Prediction model captures the relationship between the operating conditions and the resulting melt viscosity and as such describes the specific material behavior. The Feedback model on the other hand describes the fundamental physical relationship between viscosity and extruder pressure and is a function of the machine geometry. The resulting system yields viscosity estimates within 1% error, shows excellent disturbance rejection properties and can be directly applied to model-based control. This is of major significance to achieving higher quality and reducing waste and set-up times in the polymer extrusion industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As indústrias têm buscado constantemente reduzir gastos operacionais, visando o aumento do lucro e da competitividade. Para alcançar essa meta, são necessários, dentre outros fatores, o projeto e a implantação de novas ferramentas que permitam o acesso às informações relevantes do processo de forma precisa, eficiente e barata. Os sensores virtuais têm sido aplicados cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Este trabalho tem como objetivo estimar a qualidade da alumina fluoretada proveniente de uma Planta de Tratamento de Gases (PTG), a qual é resultado da adsorção de gases poluentes em alumina virgem, via sensor virtual. O modelo que emula o comportamento de um sensor de qualidade de alumina foi criado através da técnica de inteligência computacional conhecida como Rede Neural Artificial. As motivações deste trabalho consistem em: realizar simulações virtuais, sem comprometer o funcionamento da PTG; tomar decisões mais precisas e não baseada somente na experiência do operador; diagnosticar potenciais problemas, antes que esses interfiram na qualidade da alumina fluoretada; manter o funcionamento do forno de redução de alumínio dentro da normalidade, pois a produção de alumina de baixa qualidade afeta a reação de quebra da molécula que contém este metal. Os benefícios que este projeto trará consistem em: aumentar a eficiência da PTG, produzindo alumina fluoretada de alta qualidade e emitindo menos gases poluentes na atmosfera, além de aumentar o tempo de vida útil do forno de redução.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melt viscosity is a key indicator of product quality in polymer extrusion processes. However, real time monitoring and control of viscosity is difficult to achieve. In this article, a novel “soft sensor” approach based on dynamic gray-box modeling is proposed. The soft sensor involves a nonlinear finite impulse response model with adaptable linear parameters for real-time prediction of the melt viscosity based on the process inputs; the model output is then used as an input of a model with a simple-fixed structure to predict the barrel pressure which can be measured online. Finally, the predicted pressure is compared to the measured value and the corresponding error is used as a feedback signal to correct the viscosity estimate. This novel feedback structure enables the online adaptability of the viscosity model in response to modeling errors and disturbances, hence producing a reliable viscosity estimate. The experimental results on different material/die/extruder confirm the effectiveness of the proposed “soft sensor” method based on dynamic gray-box modeling for real-time monitoring and control of polymer extrusion processes. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a ‘soft-sensor’ approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As indústrias buscam a todo o momento reduzir seus gastos operacionais para aumentar seus lucros e sua competitividade. Uma boa gestão é o fator mais importante, porém uma boa gestão é feita com auxílio de ferramentas que permitam o acesso às informações relevantes para o processo, que tenham bastante influência na tomada de decisões estratégicas, com o menor custo possível. O uso de sensores virtuais tem sido aplicado cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Atualmente, muitas indústrias já utilizam com sucesso os sensores virtuais, e este trabalho explora a sua utilização, em conjunto com as Redes Neurais Artificiais, em um processo químico em uma importante indústria de alumínio brasileira cujo controle é muito difícil pois é muito difícil extrair medidas da planta dada sua natureza corrosiva e cujas medições exigem certo custo operacional além de estarem sujeitas a ruídos. A aplicação dos sensores virtuais poderá reduzir os intervalos de medições bem como os custos operacionais. Ao longo deste trabalho será apresentada a metodologia de como projetar o sensor virtual utilizando o processo químico como estudo de caso, seguindo a literatura recomendada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La stratégie actuelle de contrôle de la qualité de l’anode est inadéquate pour détecter les anodes défectueuses avant qu’elles ne soient installées dans les cuves d’électrolyse. Des travaux antérieurs ont porté sur la modélisation du procédé de fabrication des anodes afin de prédire leurs propriétés directement après la cuisson en utilisant des méthodes statistiques multivariées. La stratégie de carottage des anodes utilisée à l’usine partenaire fait en sorte que ce modèle ne peut être utilisé que pour prédire les propriétés des anodes cuites aux positions les plus chaudes et les plus froides du four à cuire. Le travail actuel propose une stratégie pour considérer l’histoire thermique des anodes cuites à n’importe quelle position et permettre de prédire leurs propriétés. Il est montré qu’en combinant des variables binaires pour définir l’alvéole et la position de cuisson avec les données routinières mesurées sur le four à cuire, les profils de température des anodes cuites à différentes positions peuvent être prédits. Également, ces données ont été incluses dans le modèle pour la prédiction des propriétés des anodes. Les résultats de prédiction ont été validés en effectuant du carottage supplémentaire et les performances du modèle sont concluantes pour la densité apparente et réelle, la force de compression, la réactivité à l’air et le Lc et ce peu importe la position de cuisson.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past ten years, minimally invasive plate osteosynthesis (MIPO) for the fixation of long bone fractures has become a clinically accepted method with good outcomes, when compared to the conventional open surgical approach (open reduction internal fixation, ORIF). However, while MIPO offers some advantages over ORIF, it also has some significant drawbacks, such as a more demanding surgical technique and increased radiation exposure. No clinical or experimental study to date has shown a difference between the healing outcomes in fractures treated with the two surgical approaches. Therefore, a novel, standardised severe trauma model in sheep has been developed and validated in this project to examine the effect of the two surgical approaches on soft tissue and fracture healing. Twenty four sheep were subjected to severe soft tissue damage and a complex distal femur fracture. The fractures were initially stabilised with an external fixator. After five days of soft tissue recovery, internal fixation with a plate was applied, randomised to either MIPO or ORIF. Within the first fourteen days, the soft tissue damage was monitored locally with a compartment pressure sensor and systemically by blood tests. The fracture progress was assessed fortnightly by x-rays. The sheep were sacrificed in two groups after four and eight weeks, and CT scans and mechanical testing performed. Soft tissue monitoring showed significantly higher postoperative Creatine Kinase and Lactate Dehydrogenase values in the ORIF group compared to MIPO. After four weeks, the torsional stiffness was significantly higher in the MIPO group (p=0.018) compared to the ORIF group. The torsional strength also showed increased values for the MIPO technique (p=0.11). The measured total mineralised callus volumes were slightly higher in the ORIF group. However, a newly developed morphological callus bridging score showed significantly higher values for the MIPO technique (p=0.007), with a high correlation to the mechanical properties (R2=0.79). After eight weeks, the same trends continued, but without statistical significance. In summary, this clinically relevant study, using the newly developed severe trauma model in sheep, clearly demonstrates that the minimally invasive technique minimises additional soft tissue damage and improves fracture healing in the early stage compared to the open surgical approach method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1-30 mu m in diameter) have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m) with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR) and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the commoditization of sensing, actuation and communication hardware increases, so does the potential for dynamically tasked sense and respond networked systems (i.e., Sensor Networks or SNs) to replace existing disjoint and inflexible special-purpose deployments (closed-circuit security video, anti-theft sensors, etc.). While various solutions have emerged to many individual SN-centric challenges (e.g., power management, communication protocols, role assignment), perhaps the largest remaining obstacle to widespread SN deployment is that those who wish to deploy, utilize, and maintain a programmable Sensor Network lack the programming and systems expertise to do so. The contributions of this thesis centers on the design, development and deployment of the SN Workbench (snBench). snBench embodies an accessible, modular programming platform coupled with a flexible and extensible run-time system that, together, support the entire life-cycle of distributed sensory services. As it is impossible to find a one-size-fits-all programming interface, this work advocates the use of tiered layers of abstraction that enable a variety of high-level, domain specific languages to be compiled to a common (thin-waist) tasking language; this common tasking language is statically verified and can be subsequently re-translated, if needed, for execution on a wide variety of hardware platforms. snBench provides: (1) a common sensory tasking language (Instruction Set Architecture) powerful enough to express complex SN services, yet simple enough to be executed by highly constrained resources with soft, real-time constraints, (2) a prototype high-level language (and corresponding compiler) to illustrate the utility of the common tasking language and the tiered programming approach in this domain, (3) an execution environment and a run-time support infrastructure that abstract a collection of heterogeneous resources into a single virtual Sensor Network, tasked via this common tasking language, and (4) novel formal methods (i.e., static analysis techniques) that verify safety properties and infer implicit resource constraints to facilitate resource allocation for new services. This thesis presents these components in detail, as well as two specific case-studies: the use of snBench to integrate physical and wireless network security, and the use of snBench as the foundation for semester-long student projects in a graduate-level Software Engineering course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.