876 resultados para Soft real-time distributed systems
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.
Resumo:
The hybrid test method is a relatively recently developed dynamic testing technique that uses numerical modelling combined with simultaneous physical testing. The concept of substructuring allows the critical or highly nonlinear part of the structure that is difficult to numerically model with accuracy to be physically tested whilst the remainder of the structure, that has a more predictable response, is numerically modelled. In this paper, a substructured soft-real time hybrid test is evaluated as an accurate means of performing seismic tests of complex structures. The structure analysed is a three-storey, two-by-one bay concentrically braced frame (CBF) steel structure subjected to seismic excitation. A ground storey braced frame substructure whose response is critical to the overall response of the structure is tested, whilst the remainder of the structure is numerically modelled. OpenSees is used for numerical modelling and OpenFresco is used for the communication between the test equipment and numerical model. A novel approach using OpenFresco to define the complex numerical substructure of an X-braced frame within a hybrid test is also presented. The results of the hybrid tests are compared to purely numerical models using OpenSees and a simulated test using a combination of OpenSees and OpenFresco. The comparative results indicate that the test method provides an accurate and cost effective procedure for performing
full scale seismic tests of complex structural systems.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Popular wireless networks, such as IEEE 802.11/15/16, are not designed for real-time applications. Thus, supporting real-time quality of service (QoS) in wireless real-time control is challenging. This paper adopts the widely used IEEE 802.11, with the focus on its distributed coordination function (DCF), for soft-real-time control systems. The concept of the critical real-time traffic condition is introduced to characterize the marginal satisfaction of real-time requirements. Then, mathematical models are developed to describe the dynamics of DCF based real-time control networks with periodic traffic, a unique feature of control systems. Performance indices such as throughput and packet delay are evaluated using the developed models, particularly under the critical real-time traffic condition. Finally, the proposed modelling is applied to traffic rate control for cross-layer networked control system design.
Resumo:
As one of the most widely used wireless network technologies, IEEE 802.11 wireless local area networks (WLANs) have found a dramatically increasing number of applications in soft real-time networked control systems (NCSs). To fulfill the real-time requirements in such NCSs, most of the bandwidth of the wireless networks need to be allocated to high-priority data for periodic measurements and control with deadline requirements. However, existing QoS-enabled 802.11 medium access control (MAC) protocols do not consider the deadline requirements explicitly, leading to unpredictable deadline performance of NCS networks. Consequentially, the soft real-time requirements of the periodic traffic may not be satisfied, particularly under congested network conditions. This paper makes two main contributions to address this problem in wireless NCSs. Firstly, a deadline-constrained MAC protocol with QoS differentiation is presented for IEEE 802.11 soft real-time NCSs. It handles periodic traffic by developing two specific mechanisms: a contention-sensitive backoff mechanism, and an intra-traffic-class QoS differentiation mechanism. Secondly, a theoretical model is established to describe the deadline-constrained MAC protocol and evaluate its performance of throughput, delay and packet-loss ratio in wireless NCSs. Numerical studies are conducted to validate the accuracy of the theoretical model and to demonstrate the effectiveness of the new MAC protocol.
Resumo:
Many real-time database applications arise in electronic financial services, safety-critical installations and military systems where enforcing security is crucial to the success of the enterprise. For real-time database systems supporting applications with firm deadlines, we investigate here the performance implications, in terms of killed transactions, of guaranteeing multilevel secrecy. In particular, we focus on the concurrency control (CC) aspects of this issue. Our main contributions are the following: First, we identify which among the previously proposed real-time CC protocols are capable of providing covert-channel-free security. Second, using a detailed simulation model, we profile the real-time performance of a representative set of these secure CC protocols for a variety of security-classified workloads and system configurations. Our experiments show that a prioritized optimistic CC protocol, OPT-WAIT, provides the best overall performance. Third, we propose and evaluate a novel "dual-CC" approach that allows the real-time database system to simultaneously use different CC mechanisms for guaranteeing security and for improving real-time performance. By appropriately choosing these different mechanisms, concurrency control protocols that provide even better performance than OPT-WAIT are designed. Finally, we propose and evaluate GUARD, an adaptive admission-control policy designed to provide fairness with respect to the distribution of killed transactions across security levels. Our experiments show that GUARD efficiently provides close to ideal fairness for real-time applications that can tolerate covert channel bandwidths of upto one bit per second.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
This paper applies the concepts and methods of complex networks to the development of models and simulations of master-slave distributed real-time systems by introducing an upper bound in the allowable delivery time of the packets with computation results. Two representative interconnection models are taken into account: Uniformly random and scale free (Barabasi-Albert), including the presence of background traffic of packets. The obtained results include the identification of the uniformly random interconnectivity scheme as being largely more efficient than the scale-free counterpart. Also, increased latency tolerance of the application provides no help under congestion.
Resumo:
The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.
Resumo:
The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.
Resumo:
Mobile/tower cranes are the most essential forms of construction plant in use in the construction industry but are also the subject of several safety issues. Of these, blind lifting has been found to be one of the most hazardous of crane operations. To improve the situation, a real-time monitoring system that integrates the use of a Global Positioning System (GPS) and Radio Frequency Identification (RFID) is developed. This system aims to identify unauthorized work or entrance of personnel within a pre-defined risk zone by obtaining positioning data of both site workers and the crane. The system alerts to the presence of unauthorized workers within a risk zone——currently defined as 3m from the crane. When this happens, the system suspends the power of the crane and a warning signal is generated to the safety management team. In this way the system assists the safety management team to manage the safety of hundreds of workers simultaneously. An onsite trial with debriefing interviews is presented to illustrate and validate the system in use.
Resumo:
Real-time locating systems (RTLSs) are considered an effective way to identify and track the location of an object in both indoor and outdoor environments. Various RTLSs have been developed and made commercially available in recent years. Research into RTLSs in the construction sector is ubiquitous and results have been published in many construction-related academic journals over the past decade. A succinct and systematic review of current applications would help academics, researchers and industry practitioners in identifying existing research deficiencies and therefore future research directions. However, such a review is lacking to date. This paper provides a framework for understanding RTLS research and development in the construction literature over the last decade. The research opportunities and directions of construction RTLS are highlighted. Background information relating to construction RTLS trends, accuracy, deployment, cost, purposes, advantages and limitations is provided. Four major research gaps are identified and research opportunities and directions are highlighted.