911 resultados para Sodium deoxycholate
Resumo:
The study evaluated six Plasmodium falciparum antigen extracts to be used in the IgG and IgM enzyme-linked immunosorbent assays (ELISA), for malaria diagnosis and epidemiological studies. Results obtained with eighteen positive and nine negative control sera indicated that there were statistically significant differences among these antigen extracts (Multifactor ANOVA, p< 0.0001). Urea, sodium deoxycholate and Zwittergent antigen extracts performed better than did the three others, their features being very similar for the detection of IgG antibodies. Urea, alkaline and sodium deoxycholate antigen extracts proved to be better than the others for the detection of IgM antibodies. A straight line relationship was found between the optical densities (or their respective log 10) and the log 10 of antibody dilutions, with a very constant slope. Thus serum titers could be determined by direct titration and by two different equations, needing only one serum dilution. For IgM antibody detections, log 10 expression gave results that better correlated with direct titration (95% Bonferroni). For IgG antibody detections, the titer differences were not significant. The reproducibility of antibody titers and antigen batches was also evaluated, giving satisfactory results.
Resumo:
A Dot-ELISA using a measles virus (MV) antigen obtained by sodium deoxycholate treatment was standardized and evaluated for IgM and IgG antibody detection in measles patients and measles-vaccinated subjects. A total of 192 serum samples were studied, comprising 47 from patients with acute and convalescent measles, 55 from 9-month old children prior to measles vaccination and 41 from children of the same age after vaccination, and 49 from patients with unrelated diseases. The diagnostic performances of the IgG Dot-ELISA and IgG immuno fluorescence test (IFT) were found to be close, varying from 0.97 to 1.00 in sensitivity and the specificities were maximum (1.00). Nevertheless, the sensitivity of the IgM Dot-ELISA (0.85) was higher than that (0.63) of the IgM IFT, although both assays had comparably high (1.00) specificities. The IgM Dot-ELISA in particular proved to be more sensitive in relation to other assays studied by revealing antibodies in 80.0% (12/15) of vaccinated children on the 15th day after immunization. In contrast the IgM IFT, failed to detect antibodies in the same group of vaccinated children. The stability of the MV antigen was longer than that of the IFT antigen, and the reproducibility of the Dot-Elisa was satisfactory.
Resumo:
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], Jørgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.
Resumo:
We investigated the angiotensin II (Ang II)-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I), and tetradecapeptide (TDP) renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM). The angiotensin converting enzyme (ACE) inhibitor captopril (36 µM) completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM) significantly reduced (80-90%) the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95%) the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition
Resumo:
The present study was designed to determine relaxation in response to 17ß-estradiol by isolated perfused hearts from intact normotensive male and female rats as well as the contribution of endothelium and its relaxing factors to this action. Baseline coronary perfusion pressure was determined and the vasoactive effects of 17ß-estradiol (10 µM) were assessed by in bolus administration before and after endothelium denudation by infusion of 0.25 µM sodium deoxycholate or perfusion with 100 µM L-NAME, 2.8 µM indomethacin, 0.75 µM clotrimazole, 100 µM L-NAME plus 2.8 µM indomethacin, and 100 µM L-NAME plus 0.75 µM clotrimazole. Baseline coronary perfusion pressure differed significantly between males (84 ± 2 mmHg, N = 61) and females (102 ± 2 mmHg, N = 61). Bolus injection of 10 µM 17ß-estradiol elicited a transient relaxing response in all groups, which was greater in coronary beds from females. For both sexes, the relaxing response to 17ß-estradiol was at least in part endothelium-dependent. In the presence of the nitric oxide synthase inhibitor L-NAME, the relaxing response to 17ß-estradiol was reduced only in females. Nevertheless, in the presence of indomethacin, a cyclooxygenase inhibitor, or clotrimazole, a cytochrome P450 inhibitor, the 17ß-estradiol response was significantly reduced in both groups. In addition, combined treatment with L-NAME plus indomethacin or L-NAME plus clotrimazole also reduced the 17ß-estradiol response in both groups. These results indicate the importance of prostacyclin and endothelium-derived hyperpolarizing factor in the relaxing response to 17ß-estradiol. 17ß-estradiol-induced relaxation may play an important role in the regulation of coronary tone and this may be one of the reasons why estrogen replacement therapy reduces the risk of coronary heart disease in postmenopausal women.
Resumo:
Simulated intestinal fluids (SIFs) used to assay the solubility of orally administered drugs are typically based on a single bile salt; sodium taurocholate (STC). The aim of this study was to develop mimetic intestinal fluids with a closer similarity to physiological fluids than those reported to date by developing a mixed bile salt (MBS) system (STC, sodium glycodeoxycholate, sodium deoxycholate; 60:39:1) with different concentrations of lecithin, the preponderant intestinal phospholipid. Hydrocortisone and progesterone were used as model drugs to evaluate systematically the influence of SIF composition on solubility. Increasing total bile salt concentration from 0 to 30 mM increased hydrocortisone and progesterone solubility by 2- and ∼25-fold, respectively. Accordingly, higher solubilities were measured in the fed-state compared to the fasted-state SIFs. Progesterone showed the greatest increases in solubility in STC and MBS systems (2-7-fold) compared to hydrocortisone (no significant change; P>0.05) as lecithin concentration was increased. Overall, MBS systems gave similar solubility profiles to STC. In conclusion, the addenda of MBS and lecithin were found to be secondary to the influence of BS concentration. These data provide a foundation for the design of more bio-similar media for pivotal decision-guiding assays in drug development and quality control settings.
Resumo:
As técnicas de fluorimetria, condutometria, viscosimetria, turbidimetria, espalhamento de luz e espalhamento de raios-X a baixo ângulo (SAXS) foram empregadas no estudo da agregação de diferentes surfactantes aniônicos em presença de soluções aquosas diluídas de (hidroxipropil)celulose (HPC) 0,25% m/m, (hidroxipropilmetil)celulose (HPMC) 0,20% m/m e HPMC 0,10% m/m / NaCl 0,10 mol L-1. Também foram investigadas através de SAXS soluções concentradas de HPC (30, 40 e 50% m/m). Admitindo-se uma faixa geral de concentração, entre 10-4 e 10-1 mol L-1, foram utilizados neste estudo os surfactantes colato de sódio (CS), deoxicolato de sódio (DC), derivados dos sais biliares, e o alquilsintético dodecilsulafato de sódio (SDS). Observou-se que os polímeros contribuem diferentemente no processo de agregação de cada surfactante, evidenciado pela mudança dos valores da concentração de agregação crítica (CAC) em relação à concentração micelar crítica (CMC). Os resultados condutométricos confirmaram a interação éteres de celulose/sais biliares, embora a mesma tenha se mostrado mais fraca em relação a éteres de celulose/SDS. Os dados termodinâmicos demonstraram que a formação de agregados polímero/surfactante apresenta maior estabilidade do que as próprias micelas livres. Os resultados de viscosimetria e turbidimetria evidenciaram as diferenças estruturais entre HPC e HPMC, assim como entre os surfactantes. Através do espalhamento de luz dinâmico, verificou-se a existência de dois modos de correlação, rápido e lento. O primeiro é atribuído à cadeia polimérica isolada, agregados polímero/surfactante intramoleculares ou mesmo a micelas livres. Por sua vez, o modo lento relaciona-se a clusters poliméricos ou agregados polímero/surfactante intermoleculares. Adicionalmente, as curvas de distribuição dos tempos de relaxação demonstraram a influência de cada surfactante sobre a dinâmica dos polímeros. Tal influência é percebida antes mesmo da CAC, contrariando o modelo da interação polímero/surfactante proposto por Cabane. Os resultados de SAXS acusaram a formação de domínios líquido-cristalinos em xx soluções concentradas de HPC, assim como confirmaram a presença de micelas livres a altas concentrações de surfactantes nos sistemas diluídos. Em linhas gerais, os resultados indicaram a interação dos polímeros com SDS mais efetiva do que os mesmos polímeros e os sais biliares. No que tange à natureza do polímero, a HPC mostrou uma maior estabilidade na sua interação com os surfactantes do que a HPMC.
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment
Resumo:
The aim of this work was to evaluate how an aqueous micellar system containing Amphotericin B (AmB) and sodium deoxycholate (DOC) can be rebuilt after heating treatment. Also a review of the literature about the new physicochemical and biological properties of this new system was carried out. Afterwards, heated (AmB-DOC-H) and unheated (AmB-DOC) micelles were subsequently diluted at four different concentrations (50mg.L-1, 5mg.L-1, 0.5mg.L-1 and 0.05mg.L-1) to perform the physicochemical study and, then, the pharmacotoxicity assay, in which two cell models were used for the in vitro experiments, Red Blood Cells (RBC) from human donors and Candida parapisilosis (Cp). While potassium (K+) and hemoglobin leakage from RBC were the used parameters to evaluate the acute and chronic toxicity, respectively, the efficacy of AmB-DOC and AmB-DOC-H were assessed by K+ leakage and cell survival rate from Cp. The spectral study revealed a slight change on the aggregate peak from 327nm to 323nm for AmB-DOC-H compared to AmB-DOC. Concerning the toxicity, although AmB-DOC and AmB-DOC-H presented different behavior for hemoglobin leakage, AmB-DOC produced higher leakage than AmB-DOC-H at high concentrations (from 5mg.L-1) with values tending to zero. However, concerning K+ leakage, both AmB-DOC and AmB-DOC-H, showed similar profile for both cell models, RBC and Cp (p<0,05). AmB-DOC-H and AmB-DOC also revealed similar profile of activity against Cp with equivalent survival rate. In short, the AmB-DOC-H showed much less toxicity than AmB-DOC, but remained as active as the late one against fungal cell. Therefore, the results highlight the importance of this new procedure as a simple, inexpensive and safe alternative to produce a new kind of micelle system for treatment of systemic fungal infections
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, a micellar system of benzathine penicillin G (BPG) in sodium deoxycholate (NaDC) was developed and evaluated physicochemically. The solubility profile of the drug in water and buffer solutions at various pH was determined, as well as its n-octanol/water partition coefficient. The Critical Micellar Concentration of NaDC and its ability to incorporate BPG were also assessed. The study was carried out at low and high ionic strength which was adjusted by the addition of sodium chloride. The results demonstrated the ability of the micellar system to incorporate BPG, as well as to increase its apparent solubility in water. The enhancement of the solubility of BPG by the presence of NaDC micelles could be analyzed quantitatively within the framework of the pseudo-phase model. Concentration analysis showed that the micellar system could attain up to 90% incorporation of BPG. The incorporated drug is expected to exhibit improved stability, since the antibiotic enclosed in the hydrophobic core of micelles is rather shielded from the aqueous external environment.
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this research was to elucidate the mechanism of assembly of retroviruses, specifically of murine leukemia virus, as studied through the treatment of virus-infected cells with interferon and through the use of temperature sensitive (ts) mutants. Our studies have shown a rapid and specific association of Rauscher murine leukemia virus (R-MuLV) precursor polyprotein Pr65('gag) with cytoskeletal elements in infected mouse fibroblasts. The Pr65('gag) associated with Nonidet P-40 (NP40)-insoluble cytoskeletal structures appeared to be subphosphorylated in comparison to NP40-soluble Pr65('gag). The association of Pr65('gag) with skeletal elements could be disrupted by extraction of the cytoskeleton with sodium deoxycholate, an ionic detergent. Both the skeleton-associated Pr65('gag) and its NP40-soluble counterpart were labeled with {('3)H}-palmitate, indicating their probable association with lipids presumably in the plasma membrane. Pr65('gag) molecules bound to skeletal elements in the infected cell appeared to be more stable to proteolytic processing than NP40-soluble Pr65('gag). Our studies with certain ts mutants of murine leukemia virus, defective in virus assembly, including Mo-MuLV ts3 and R-MuLV ts17, ts24, ts25 and ts26, have shown that virions released at 39(DEGREES)C (nonpermissive temperature) had high levels of uncleaved Pr65('gag) relative to that seen in virions released at 33(DEGREES)C (permissive temperature). Examination of cell extracts revealed that Pr54('gag) was more stable to processing at 39(DEGREES)C than at 33(DEGREES)C, whereas the 'env' and glycosylated 'gag' proteins were processed to the same extent at both temperatures. Detergent extraction of pulse-labeled cells to generate an NP40-insoluble cytoskeleton-enriched fraction showed that in ts3-, ts17- and ts24-infected cells, Pr65('gag) accumulated in the cytoskeleton-enriched fraction. In contrast, cells infected with ts25 or ts26 showed no preferential localization of Pr65('gag) in the cytoskeleton in a short pulse, but instead, Pr65('gag) accumulated in both the NP40-soluble and -insoluble fractions during a chase-incubation. The association of Pr65('gag) with cytoskeletal elements in the cell was neither increased nor decreased by blocking virus assembly and release with interferon. Based on these and other results, we have proposed a model for the active role of cytoskeleton-associated Pr65('gag) in retrovirus assembly.^
Resumo:
Barley (Hordeum vulgare L.) leaves were used to isolate and characterize the chloroplast NAD(P)H dehydrogenase complex. The stroma fraction and the thylakoid fraction solubilized with sodium deoxycholate were analyzed by native polyacrylamide gel electrophoresis, and the enzymes detected with NADH and nitroblue tetrazolium were electroeluted. The enzymes electroeluted from band S from the stroma fraction and from bands T1 (ET1) and T2 from the thylakoid fraction solubilized with sodium deoxycholate had ferredoxin-NADP oxidoreductase (FNR; EC 1.18.1.2) and NAD(P)H-FeCN oxidoreductase (NAD[P]H-FeCNR) activities. Their NADPH-FeCNR activities were inhibited by 2′-monophosphoadenosine-5′-diphosphoribose and by enzyme incubation with p-chloromercuriphenylsulfonic acid (p-CMPS), NADPH, and p-CMPS plus NADPH. They presented Michaelis constant NADPH values that were similar to those of FNRs from several sources. Their NADH-FeCNR activities, however, were not inhibited by 2′-monophosphoadenosine-5′-diphosphoribose but were weakly inhibited by enzyme incubation with NADH, p-CMPS, and p-CMPS plus NADH. We found that only ET1 contained two polypeptides of 29 and 35 kD, which reacted with the antibodies raised against the mitochondrial complex I TYKY subunit and the chloroplast ndhA gene product, respectively. However, all three enzymes contained two polypeptides of 35 and 53 kD, which reacted with the antibodies raised against barley FNR and the NADH-binding 51-kD polypeptide of the mitochondrial complex I, respectively. The results suggest that ET1 is the FNR-containing thylakoidal NAD(P)H dehydrogenase complex.