960 resultados para Social Computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social Computing Data Repository hosts data from a collection of many different social media sites, most of which have blogging capacity. Some of the prominent social media sites included in this repository are BlogCatalog, Twitter, MyBlogLog, Digg, StumbleUpon, del.icio.us, MySpace, LiveJournal, The Unofficial Apple Weblog (TUAW), Reddit, etc. The repository contains various facets of blog data including blog site metadata like, user defined tags, predefined categories, blog site description; blog post level metadata like, user defined tags, date and time of posting; blog posts; blog post mood (which is defined as the blogger's emotions when (s)he wrote the blog post); blogger name; blog post comments; and blogger social network.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The General Election for the 56th United Kingdom Parliament was held on 7 May 2015. Tweets related to UK politics, not only those with the specific hashtag ”#GE2015”, have been collected in the period between March 1 and May 31, 2015. The resulting dataset contains over 28 million tweets for a total of 118 GB in uncompressed format or 15 GB in compressed format. This study describes the method that was used to collect the tweets and presents some analysis, including a political sentiment index, and outlines interesting research directions on Big Social Data based on Twitter microblogging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Not just with the emergence but also with the growing of the electronic market, that is, the growth of online suppliers of services and products and Internet users (potential consumers), the necessary conditions to the affirmation of the agile/virtual enterprises (A/VE) as a present and future enterprise organizational model are created. In this context, it is our understanding that the broker may have an important role in its development, namely, if the broker performs functions for the A/VE with better efficacy and efficiency. In this article, we will present first a revision of the broker’s models in a structured form. We present a taxonomy of possible broker’s functions for the broker’s actuation near the A/VE and then the classification of the literature broker’s models. This classification will permit an analysis of a broker’s model and establish a mainframe for our broker’s model according to the BM_Virtual Enterprise Architecture Reference Model (BM_VEARM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the basis on which recruiters form hirability impressions for a job applicant is a key issue in organizational psychology and can be addressed as a social computing problem. We approach the problem from a face-to-face, nonverbal perspective where behavioral feature extraction and inference are automated. This paper presents a computational framework for the automatic prediction of hirability. To this end, we collected an audio-visual dataset of real job interviews where candidates were applying for a marketing job. We automatically extracted audio and visual behavioral cues related to both the applicant and the interviewer. We then evaluated several regression methods for the prediction of hirability scores and showed the feasibility of conducting such a task, with ridge regression explaining 36.2% of the variance. Feature groups were analyzed, and two main groups of behavioral cues were predictive of hirability: applicant audio features and interviewer visual cues, showing the predictive validity of cues related not only to the applicant, but also to the interviewer. As a last step, we analyzed the predictive validity of psychometric questionnaires often used in the personnel selection process, and found that these questionnaires were unable to predict hirability, suggesting that hirability impressions were formed based on the interaction during the interview rather than on questionnaire data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En una Web dominada por los medios sociales para la información, la relación y la comunicación, la dinámica que se establece entre contenidos, personas y tecnología cambia radicalmente. Ante la relevancia que cobra el contenido generado por usuarios en este escenario –esencialmente relacional-, la localización de las mejores fuentes de información requiere sistemas recomendadores que incorporen la naturaleza social de una Web que va más allá de la primigenia internet. Se revisan las aproximaciones actuales a los procesos de recomendación, poniéndolas en el contexto de las tendencias asociadas al fenómeno del social computing. Asimismo, se destacan algunas líneas de actuación en la redefinición del problema de la recomendación en un panorama dominado por las redes sociales y la generación de contenidos por los usuarios

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an empirical evidence of user bias within a laboratory-oriented evaluation of a Spoken Dialog System. Specifically, we addressed user bias in their satisfaction judgements. We question the reliability of this data for modeling user emotion, focusing on contentment and frustration in a spoken dialog system. This bias is detected through machine learning experiments that were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. The target used was the satisfaction rating and the predictors were conversational/dialog features. Our results indicated that standard classifiers were significantly more successful in discriminating frustration and contentment and the intensities of these emotions (reflected by user satisfaction ratings) from annotator data than from user data. Indirectly, the results showed that conversational features are reliable predictors of the two abovementioned emotions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo aplicamos a la red social Twitter un modelo de análisis del discurso político y mediático desarrollado en publicaciones previas, que permite hacer compatible el estudio de los datos discursivos con propuestas explicativas surgidas a propósito de la comunicación política (neurocomunicación) y de la comunicación digital (la red como quinto estado, convergencia, inteligencia colectiva). Asumimos que hay categorías del encuadre discursivo (frame) que pueden ser tratadas como indicadores de habilidades cognitivas y comunicativas. Analizamos estas categorías agrupándolas en tres dimensiones fundamentales: la intencional (ilocutividad del tuit, encuadre interpretativo de las etiquetas), referencial (temas, protagonistas), e interactiva (alineamiento estructural, predictibilidad; marcas de intertextualidad y dialogismo; afiliación partidista). El corpus consta de 4116 tuits: 3000 tuits pertenecientes a los programas Al Rojo Vivo (La Sexta: A3 Media), Las Mañanas Cuatro (Cuatro: Mediaset) y Los Desayunos de TVE (RTVE), 1116 tuits de seguidores de los programas, que corresponden a 45 tuits de cada programa. Los resultados confirman que el modelo permite establecer diferentes perfiles de subjetividad política en las cuentas de Twitter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El artículo analiza la figura del prosumidor desde los estudios visuales a partir de la combinación de la teoría de los actos de habla y los nuevos medios. El objetivo es evaluar si la distinción entre productores y consumidores, estrategias y tácticas de Michel de Certeau continúa siendo operativa en las interfaces gráficas de la cultura global de la información de Scott Lash. Para ello distingue dos tipos de performatividad de los actos de habla: la performatividad top-down del software, y la bottom-up de los juegos del lenguaje y las formas de vida. Estos tipos se aplican al análisis del discurso de los eslóganes que aparecen en los sitios web de las iniciativas “open” y de economía colaborativa, ya que las primeras están dedicadas a la producción de bienes inmateriales y las segundas a la producción de bienes materiales. El desarrollo muestra cómo los dos tipos de performatividad transforman el análisis textual de los estudios literarios y cinematográficos en una metodología capaz de investigar acciones materiales, humanas y no humanas. Las conclusiones describen el surgimiento de nuevas convenciones narrativas de poder y control ajenas a la ficción que apuntan a una “DIY society”.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Future pervasive environments will take into consideration not only individual user’s interest, but also social relationships. In this way, pervasive communities can lead the user to participate beyond traditional pervasive spaces, enabling the cooperation among groups and taking into account not only individual interests, but also the collective and social context. Social applications in CSCW (Computer Supported Cooperative Work) field represent new challenges and possibilities in terms of use of social context information for adaptability in pervasive environments. In particular, the research describes the approach in the design and development of a context.aware framework for collaborative applications (CAFCA), utilizing user’s context social information for proactive adaptations in pervasive environments. In order to validate the proposed framework an evaluation was conducted with a group of users based on enterprise scenario. The analysis enabled to verify the impact of the framework in terms of functionality and efficiency in real-world conditions. The main contribution of this thesis was to provide a context-aware framework to support collaborative applications in pervasive environments. The research focused on providing an innovative socio-technical approach to exploit collaboration in pervasive communities. Finally, the main results reside in social matching capabilities for session formation, communication and coordinations of groupware for collaborative activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Problem This dissertation presents a literature-based framework for communication in science (with the elements partners, purposes, message, and channel), which it then applies in and amends through an empirical study of how geoscientists use two social computing technologies (SCTs), blogging and Twitter (both general use and tweeting from conferences). How are these technologies used and what value do scientists derive from them? Method The empirical part used a two-pronged qualitative study, using (1) purposive samples of ~400 blog posts and ~1000 tweets and (2) a purposive sample of 8 geoscientist interviews. Blog posts, tweets, and interviews were coded using the framework, adding new codes as needed. The results were aggregated into 8 geoscientist case studies, and general patterns were derived through cross-case analysis. Results A detailed picture of how geoscientists use blogs and twitter emerged, including a number of new functions not served by traditional channels. Some highlights: Geoscientists use SCTs for communication among themselves as well as with the public. Blogs serve persuasion and personal knowledge management; Twitter often amplifies the signal of traditional communications such as journal articles. Blogs include tutorials for peers, reviews of basic science concepts, and book reviews. Twitter includes links to readings, requests for assistance, and discussions of politics and religion. Twitter at conferences provides live coverage of sessions. Conclusions Both blogs and Twitter are routine parts of scientists' communication toolbox, blogs for in-depth, well-prepared essays, Twitter for faster and broader interactions. Both have important roles in supporting community building, mentoring, and learning and teaching. The Framework of Communication in Science was a useful tool in studying these two SCTs in this domain. The results should encourage science administrators to facilitate SCT use of scientists in their organization and information providers to search SCT documents as an important source of information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of social networking platforms has drawn a lot of attentions to the need for social computing. Social computing utilises human insights for computational tasks as well as design of systems that support social behaviours and interactions. One of the key aspects of social computing is the ability to attribute responsibility such as blame or praise to social events. This ability helps an intelligent entity account and understand other intelligent entities’ social behaviours, and enriches both the social functionalities and cognitive aspects of intelligent agents. In this paper, we present an approach with a model for blame and praise detection in text. We build our model based on various theories of blame and include in our model features used by humans determining judgment such as moral agent causality, foreknowledge, intentionality and coercion. An annotated corpus has been created for the task of blame and praise detection from text. The experimental results show that while our model gives similar results compared to supervised classifiers on classifying text as blame, praise or others, it outperforms supervised classifiers on more finer-grained classification of determining the direction of blame and praise, i.e., self-blame, blame-others, self-praise or praise-others, despite not using labelled training data.

Relevância:

40.00% 40.00%

Publicador: