964 resultados para Snowy River catchment
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events.Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg haˉ¹ per event while losses of N and P ranged from 10 to 1900 g haˉ¹ and from 1 to 71 g haˉ¹ per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg lˉ¹), total N (range: 101-4000 ug lˉ¹) and total P (range: 14-609 ug lˉ¹). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent.Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg lˉ¹), total N (range: 650-6350 ug lˉ¹) and total P (range: 50-1500 ug lˉ¹) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes.These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.
Resumo:
River water composition (major ion and Sr-87/Sr-86 ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L-1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L-1), with radiogenic Sr-87/Sr-86 isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and Sr-87/Sr-86 and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and Sr-87/Sr-86 isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and Sr-87/Sr-86 isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Based on 1997-1998 field investigations in the Changjiang river mouth, rain sampling from the river's upper reaches to the mouth, historical data, and relevant literature, the various sources of Total Nitrogen (TN) and Dissolved Inorganic Nitrogen (DIN) in the Changjiang river catchment and N transport in the Changjiang river mouth were estimated. The export fluxes of various form of were mainly controlled by the river runoff, and the export fluxes of NO3-N, DIN and TN in 1998 (an especially heavy flood year) were 1438 103 tonnes (t) yr(-1) or 795.1 kg km(-2) yr(-1) 1746 10(3) t yr(-1) or 965.4 kg km(-2) yr(-1) and 2849 10(3) t yr(-1) or 1575.3 kg km(-2) yr(-1), respectively. The TN and DIN in the Changjiang river came mainly from precipitation, agricultural nonpoint sources, N lost from fertilizer and soil, and point sources of industrial waste and residential sewage discharge, which were about 56.2% and 62.3%, 15.4% and 18.5%, 17.1% and 14.4%, respectively, of the N outflow at the Changjiang river mouth; maximum transport being in the middle reaches.
Resumo:
Geo-ecological transect studies in the pastures of the upper catchment of the HuangHe (99 degrees 30'-100 degrees 00'E/35 degrees 30'-35 degrees 40'N'; 3,000-4,000 in a.s.l., Qinghai province, China) revealed evidence that pastures replace forests. Plot-based vegetation records and fenced grazing exclosure experiments enabled the identification of grazing indicator plants for the first time. The mapping of vegetation patterns of pastures with isolated juniper and Spruce forests raise questions as to the origin of the grasslands, which arc widely classified as "natural" at present. Soil investigations and charcoal fragments of Juniperus (8,153 +/- 63 uncal BP) and Picea (6,665 +/- 59 uncal BP) provide evidence of the wider presence of forests. As temperatures and rainfall records undoubtedly represent a forest climate, it is assumed that the present pastures have replaced forests. Circumstantial evidence arising from investigations into the environmental history of the Holocene effectively substantiates this theory.
Resumo:
The European Water Framework Directive requires EU Member States to introduce water quality objectives for all water bodies, including coastal waters. Measures will have to be introduced if these objectives are not met, given predictions based on current trends. In this context, the estimation of future fluxes of nutrients and contaminants in the catchment, and the evaluation of policies to improve water quality in coastal zones are an essential part of river basin management plans. This paper investigates the use of scenarios for integrated catchment/coastal zone management in the Humber Estuary in the U.K. The context of this ongoing research is a European research project which aims to assist the implementation of integrated catchment and coastal zone management by analysing the response of the coastal sea to changes in fluxes of nutrients and contaminants from the catchments. The example of the Humber illustrates how scenarios focusing on water quality improvement can provide a useful tool to investigate future fluxes and evaluate policy options for a more integrated coastal/catchment management strategy.
Resumo:
PCB congener concentrations in the water column of a highly industrialized river catchment, the Aire/Calder, in N.E. England were determined weekly on a routine basis, and 2 hourly through selected high flow (flood) events. Bed, suspended and floodplain sediment PCB congener concentrations were also determined along transects of the rivers investigated. Weekly monitoring revealed that the sum of 11 quantified (Sigma11) PCBs rose in concentration by two orders of magnitude during late summer compared to their winter minimum values. This rise was concurrent with sustained periods of low flow. SigmaPCB concentrations were rapidly diluted during high flow (flood) events. Suspended sediment was, on average, 13 times more contaminated with PCBs than bed sediment, with means of 4.0 and 53.8 ng/g, respectively, while floodplain samples had an intermediate concentration of 29.8 ng/g. Principle components analysis (PCA) of congener profiles showed that all three sediment types were similar, but that congener profiles differed considerably between sediment and whole-water samples. There was no change in the percentage contribution of individual PCB congeners apparent from weekly whole-water monitoring. However, the congener pattern in whole-waters changed systematically during high flow events. PCA showed that whole-water samples collected during high flow events had progressively more sediment characteristics, and then returned to whole-water characteristics on cessation of the event. The PCA evidence, dilution of PCB concentrations during events, and suspended sediments more contaminated than bed sediments, indicate that the major sources of PCBs in this catchment are current inputs from sewage treatment works, rather than remobilization of bed sediments.
Resumo:
This paper summarises the work done on the distribution and reactivity of organic contaminants (simazine, atrazine, lindane, fluoranthene, pyrene, PCB 77, PCB 118) in the Humber Estuary and associated major rivers, as part of the LOIS programme. The preliminary flux calculations show that the most important contributors of selected organic contaminants were the rivers Trent (45% of simazine, 20% of atrazine), Aire (30% of simazine and 33% of atrazine), Don (36 and 37% of fluoranthene and pyrene) and Ouse (18% of fluoranthene and pyrene). For lindane and PCBs, the Aire and Ouse were the key sources. The water flow in all the rivers shows strong seasonal variations, as do the contaminant concentrations. As a result, the mean daily fluxes of these contaminants displayed a strong seasonality. Annual mean concentrations of simazine and atrazine decreased by more than 50% over the period 1994-1995 in most of the rivers, probably as a result of their restricted use in the UK. Mass balance calculations show that the Humber is a sink for atrazine, lindane, PCB 77 and PCB 118, although the degree of removal is generally much lower for atrazine and lindane than for PCB 77 and PCB 118. Mass balance results also show that the Humber can either be a source of fluoranthene and pyrene (in the suspended particulate phase), or a sink (in the dissolved phase), although overall the Humber acts as sink. The budget exercise represents an attempt to quantify the input and output of selected organic contaminants from catchment to ocean. However, due to limited data and assumptions involved in calculations, the estimates should be considered as an order of magnitude approximation. Further improvement both in resolution and accuracy is required.
Environmental impact assessment of forest and mining waste interactions in the Tamar River catchment
Resumo:
A statistical–dynamical downscaling (SDD) approach is applied to determine present day and future high-resolution rainfall distributions in the catchment of the river Aksu at the southern slopes of the Tienshan Mountains, Central Asia. First, a circulation weather type (CWT) classification is employed to define typical lower atmospheric flow regimes from ERA-40 reanalysis data. Selected representatives of each CWT are dynamically downscaled with the regional climate model COSMO-CLM 4.8 at a horizontal grid resolution of 0.0625°, using the ERA-40 reanalysis data as boundary conditions. Finally, the simulated representatives are recombined to obtain a high-resolution rainfall climatology for present day climate. The methodology is also applied to ensemble simulations of three different scenarios of the global climate model ECHAM5/MPI-OM1 to derive projections of rainfall changes until 2100. Comparisons of downscaled seasonal and annual rainfall with observational data suggest that the statistical–dynamical approach is appropriate to capture the observed present-day precipitation climatology over the low lands and the first elevations of the Tienshan Mountains. On the other hand, a strong bias is found at higher altitudes, where precipitation is clearly underestimated by SDD. The application of SDD to the ECHAM5/MPI-OM1 ensemble reveals that precipitation changes by the end of the 21st century depend on the season. While for autumn an increase of seasonal precipitation is found for all simulations, a decrease in precipitation is obtained during winter for most parts of the Aksu catchment. The spread between different ECHAM5/MPI-OM1 ensemble members is strongest in spring, where trends of opposite sign are found. The largest changes in rainfall are simulated for the summer season, which also shows the most pronounced spatial heterogeneity. Most ECHAM5/MPI-OM1 realizations indicate a decrease of annual precipitation over large parts of the Tienshan, and an increase restricted to the southeast of the study area. These results provide a good basis for downscaling present-day and future rainfall distributions for hydrological purposes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)