924 resultados para Snake Venoms
Resumo:
Serine proteases are widely distributed in viperid snake venoms, but rare in elapid snake venoms. Previously, we have identified a fibrinogenolytic enzyme termed OhS1 from the venom of Ophiophagus hannah. The results indicated that OhS1 might be a serine
Resumo:
In this paper, three kinds of snake venoms and lour kinds of enzymes (phospholipase A(2), fibrinolytic enzyme, arginine esterase and L-amino acid oxidase) isolated from the snake venom were analyzed. As the snake venom was different, the MALDI/TOF/MS showed difference, The MALDI/TOF/MS determination results could be affected Ly the concentrations of snake venom enzymes, And the mechanisms of desorption and ionization was also given in this study, By using MALDI/TOF/MS we obtained the accurate molecular weights and homogeneities of the enzymes. The apparent characteristics of the positive MALDI/TOF/MS of enzymes composed by two subunits were also given out, The results showed that MALDI/TOF/MS is an effective analytic method for discovering new components from snake venom complexes. And it is reliable to use this method to determine the molecular weights and purifies of protein molecules.
Resumo:
C-type lectin-like proteins (CTLPs) isolated from snake venoms are the largest and most complex non-mammalian vertebrate C-type lectin-like domain family. In the present study, we simultaneously amplified four cDNAs encoding different types of CTLP subunits from the venoms of two different species of snakes by RT-PCR with a single sense primer and a nested universal primer - two CTLP subunit-encoding cDNAs were cloned from Deinagkistrodon acutus venom and two from Agkistrodon halys Pallas venom. All four cloned CTLP subunits exhibited typical motifs in their corresponding domain regions but with relatively-low sequence similarities to each other. Compared with previously-published CTLPs, the four cloned CTLPs subunits showed slight variations in the calcium-binding sites and the disulphide bonding patterns. To our knowledge, these data constitute the first example of co-expression of CTLP platelet glycoprotein Ib-binding subunits and coagulation factors in Agkistrodon halys Pallas venom.
Resumo:
Phospholipases A(2) constitute the major components from Bothrops snake venoms and have been extensively investigated not only because they are relatively very abundant in these venoms but mainly because they display a range of many relevant biological effects, including: myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anticoagulant, neuromuscular, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoural, anti-malarial and anti-parasitic. The primary structures of several PLA(2)s have been elucidated through direct amino acid sequencing or, inderectly, through the corresponding nucleotide sequencing. Two main subgroups were thus described: (i) Asp49 PLA(2)s, showing low (basic, highly myotoxic) to relatively high (acidic, less or non myotoxic) Ca++-dependent hydrolytic activity upon artificial substrates; (ii) Lys49 PLA(2)s (basic, highly myotoxic) , showing no detectable hydrolytic activity on artificial substrates. Several crystal structures of Lys49 PLAs from genus Bothrops have already been solved, revealing very similar fold patterns. Lack of catalytic activity of myotoxic Lys49-PLA(2)s, first related solely with the fact that Lys49 occupies the position of the calcium ion in the catalyticly active site of Asp49 PLA(2)s, is now also attributed to Lys122 which interacts with the carbonyl of Cys29 hyperpolarising the peptide bond between Cys29 and Gly30 and trapping the fatty acid product in the active site, thus interrupting the catalytic cycle. This hypothesis, supported for three recent structures, is also discussed here. All Asp49 myotoxins showed to be pharmacologically more potent when compared with the Lys49 variants, but phospholipid hydrolysis is not an indispensable condition for the myotoxic, cytotoxic, bactericidal, anti-HIV, anti-parasitic, liposome disrupting or edema-inducing activities. Recent studies on site directed mutagenesis of the recombinant Lys49 myotoxin from Bothrops jararacussu revealed the participation of important amino acid residues in the membrane damaging and myotoxic activities.
Resumo:
(1) Venom pools from Bothrops neuwiedi (Bn) and from two subspecies, namely Bothrops neuwiedi pauloensis (Bnp) and Bothrops neuwiedi urutu (Bnu), collected in the States of São Paulo (SP) and Minas Gerais (MG), Brazil, were electrophoretically examined. Basic toxins with different isoelectric points were identified in the venom collected in São Paulo (BnSP). These toxins were absent in the corresponding pools from Minas Gerais (BnMG, BnpMG and BnuMG). (2) BnSP, but not BnMG, BnpMG or BnuMG, showed two myotoxins (pI congruent to 8.6 and 8.8, respectively) which were isolated by ion-exchange chromatography on CM-Sepharose. (3) From BnMG, three myotoxic isoforms (pI congruent to 8.2 and M-r = 13600) were isolated by chromatography on CM-Sepharose followed by reversed-phase high-performance liquid chromatography. (4) the chemical and biological characterization of these toxins showed a high similarity with the Lys-49 myotoxins from other bothropic venoms. (5) Doses up to 5 LD50 (i.p.) of p-bromophenacyl bromide alkylated BnSP-7 caused a total loss of lethality in 18-22-g mice, thus indicating that the LD50 was increased by greater than 5-fold. At this dose myotoxicity was also not detectable, but the edematogenic activity on the rat paw apparently did not change. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
One of the main components of snake venoms are the Asp49-phospholipases A(2), also known as svPLA(2)s. The study of these toxins is a matter of great scientific interest due to their wide variety of biological effects. In this work we present strong evidences found in literature and other aspects which strengthen the importance of quaternary assembly for understanding the activities and molecular evolution of svPLA(2)s.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The search for biological antitumor agents has been pursued for over half a century. Snake venom has been shown to possess a wide spectrum of biological activities. The objectives of the present review are to evaluate the existing controversies on this subject published in a number of papers and to propose probable explanations for the phenomena observed. We reported our results obtained in a study, in which we evaluated the action of the venoms of Crotalus durissus terrificus and Bothrops jararaca on Ehrlich ascites tumor cells. We noticed an important antitumor effect, mainly with Bothrops jararaca venom, as well as an increase in the functional activity of macrophages. We also observed an increase in the number of mononuclear and polymorphonuclear cells with Bothrops jararaca venom. Considering these findings, we postulate that both Borhrops jararaca and Crotalus durissus terrificus venoms can act directly on tumor cells. In addition, we propose an indirect mechanism, based on the stimulation of the inflammatory response, to inhibit tumor growth and to promote its rejection.
Resumo:
Envenomation via snakebites is an important public health problem in many tropical and subtropical countries that, in addition to mortality, can result in permanent sequelae as a consequence of local tissue damage, which represents a major challenge to antivenom therapy. Venom phospholipases A(2) (PLA(2)s) and PLA(2)-like proteins play a leading role in the complex pathogenesis of skeletal muscle necrosis, nevertheless their precise mechanism of action is only partially understood. Recently, detailed structural information has been obtained for more than twenty different members of the PLA(2)-like myotoxin subfamily. In this review, we integrate the available structural, biochemical and functional data on these toxins and present a comprehensive hypothesis for their myotoxic mechanism. This process involves an allosteric transition and the participation of two independent interaction sites for docking and disruption of the target membrane, respectively, leading to a five-step mechanism of action. Furthermore, recent functional and structural studies of these toxins complexed with ligands reveal diverse neutralization mechanisms that can be classified into at least three different groups. Therefore, the data summarized here for the PLA(2)-like myotoxins could provide a useful molecular basis for the search for novel neutralizing strategies to improve the treatment of envenomation by viperid snakes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 L-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from L-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4' sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019331, 1245-1262, 2012.
Resumo:
Background: Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings: Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some genderrelated differences. Conclusions/Significance: We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities.
Resumo:
Snake venoms are complex mixtures of biologically active proteins and peptides. Many of them affect hemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. Based on sequence, these snake venom components have been classified into various families, such as serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. For almost every factor involved in coagulation or fibrinolysis there is a venom protein that can activate or inactivate it. Venom proteins affect platelet function by binding or degrading vWF or platelet receptors, activating protease-activated receptors or modulating ADP release and thromboxane A2 formation. Some venom enzymes cleave key basement membrane components and directly affect capillary blood vessels to cause hemorrhaging. L-Amino acid oxidases activate platelets via H2O2 production.
Resumo:
The Australian elapid snakes are amongst the most venomous snakes in the world, but much less is known about the overall venom composition in comparison to Asian and American snakes. We have used a combined approach of cDNA cloning and 2-DE with MS to identify nerve growth factor (NGF) in venoms of the Australian elapid snakes and demonstrate its neurite outgrowth activity While a single 730 nucleotide ORF, coding for a 243 amino acid precursor protein was detected in all snakes, use of 2-DE identified NGF proteins with considerable variation in molecular size within and between the different snakes. The variation in size can be explained at least in part by Winked glycosylation. it is possible that these modifications alter the stability, is necessary to activity and other characteristics of the snake NGFs. Further characterisation delineate the function of the individual NGF isoforms.