986 resultados para Smart truss structure
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper an efficient modal control strategy is described for the active vibration control of a truss structure. In this approach, a feedback force is applied to each mode to be controlled according to a weighting factor that is determined by assessing how much each mode is excited by the primary source. The strategy is effective provided that the primary source is at a fixed position on the structure, and that the source is stationary in the statistical sense. To test the effectiveness of the control strategy it is compared with an alternative, established approach namely, Independent Modal Space Control (IMSC). Numerical simulations show that with the new strategy it is possible to significantly reduce the control effort required, with a minimal reduction in control performance. © 2007 - IOS Press and the authors. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An important stage in the solution of active vibration control in flexible structures is the optimal placement of sensors and actuators. In many works, the positioning of these devices in systems governed for parameter distributed is, mainly, based, in controllability approach or criteria of performance. The positions that enhance such parameters are considered optimal. These techniques do not take in account the space variation of disturbances. An way to enhance the robustness of the control design would be to locate the actuators considering the space distribution of the worst case of disturbances. This paper is addressed to include in the formulation of problem of optimal location of sensors and piezoelectric actuators the effect of external disturbances. The paper concludes with a numerical simulation in a truss structure considering that the disturbance is applied in a known point a priori. As objective function the C norm system is used. The LQR (Linear Quadratic Regulator) controller was used to quantify performance of different sensors/actuators configurations.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.
Resumo:
In this work, the development of a probabilistic approach to robust control is motivated by structural control applications in civil engineering. Often in civil structural applications, a system's performance is specified in terms of its reliability. In addition, the model and input uncertainty for the system may be described most appropriately using probabilistic or "soft" bounds on the model and input sets. The probabilistic robust control methodology contrasts with existing H∞/μ robust control methodologies that do not use probability information for the model and input uncertainty sets, yielding only the guaranteed (i.e., "worst-case") system performance, and no information about the system's probable performance which would be of interest to civil engineers.
The design objective for the probabilistic robust controller is to maximize the reliability of the uncertain structure/controller system for a probabilistically-described uncertain excitation. The robust performance is computed for a set of possible models by weighting the conditional performance probability for a particular model by the probability of that model, then integrating over the set of possible models. This integration is accomplished efficiently using an asymptotic approximation. The probable performance can be optimized numerically over the class of allowable controllers to find the optimal controller. Also, if structural response data becomes available from a controlled structure, its probable performance can easily be updated using Bayes's Theorem to update the probability distribution over the set of possible models. An updated optimal controller can then be produced, if desired, by following the original procedure. Thus, the probabilistic framework integrates system identification and robust control in a natural manner.
The probabilistic robust control methodology is applied to two systems in this thesis. The first is a high-fidelity computer model of a benchmark structural control laboratory experiment. For this application, uncertainty in the input model only is considered. The probabilistic control design minimizes the failure probability of the benchmark system while remaining robust with respect to the input model uncertainty. The performance of an optimal low-order controller compares favorably with higher-order controllers for the same benchmark system which are based on other approaches. The second application is to the Caltech Flexible Structure, which is a light-weight aluminum truss structure actuated by three voice coil actuators. A controller is designed to minimize the failure probability for a nominal model of this system. Furthermore, the method for updating the model-based performance calculation given new response data from the system is illustrated.
Resumo:
O difundido uso de perfis estruturais tubulares, principalmente devido às vantagens associadas ao comportamento estrutural e estético, levou a uma intensa utilização nos países da Europa, Sudeste Asiático, América do Norte e na Austrália. Países como Canadá, Inglaterra, Alemanha e Holanda fazem uso intensivo dessas estruturas e contam com uma produção corrente, industrializada e contínua com alto grau de desenvolvimento tecnológico. O aumento da oferta deste tipo de perfis, aliado a recentes pesquisas nesta área, leva o Brasil a se inserir neste cenário mundial. Entretanto, as normas brasileiras que regem o dimensionamento destes perfis ainda não se encontram atualizadas, principalmente no que tange ao dimensionamento de ligações de perfis tubulares. Considerando esta perspectiva, este trabalho apresenta uma análise de ligações tipo K e T com perfis tubulares circulares (CHS). Propõe-se estabelecer um quadro comparativo entre as formulações analíticas de dimensionamento proposta pelo Eurocode 3 Parte 1.8, 2 edição do guia de projeto de ligações tubulares do CIDECT, projeto de norma brasileira PN 02.125.03-004 e critérios de deformação limite. Para cada um dos tipos de ligações analisadas, desenvolveu-se um modelo em elementos finitos no programa Ansys, calibrado e validado com resultados experimentais e numéricos existentes na literatura. As não-linearidades física e geométrica foram incorporadas aos modelos, a fim de se mobilizar totalmente a capacidade resistente da ligação. A não-linearidade do material foi considerada através do critério de plastificação de Von Mises através de uma lei constitutiva tensão versus deformação bilinear. A não-linearidade geométrica foi introduzida no modelo através da Formulação de Lagrange Atualizado considerando-se a previsão de grandes deformações de forma a permitir a redistribuição de carregamento na ligação após o escoamento inicial. Esta dissertação propõe ainda, a modelagem de uma treliça planar constituída de perfis tubulares, objetivando estabelecer uma comparação entre um nó isolado e um nó da treliça planar.
Resumo:
Em virtude do elevado grau de desenvolvimento da tecnologia em sua produção, a utilização de perfis tubulares é grandemente difundida em países como, por exemplo, Canadá, Inglaterra, Alemanha e Holanda. A utilização de tais perfis no Brasil era bastante restrita, limitando-se a coberturas espaciais. Atualmente, a situação do mercado brasileiro começa a se alterar em decorrência do significativo aumento da oferta de perfis tubulares estruturais. Este trabalho apresenta uma análise de ligações tipo KK com perfis tubulares circulares (CHS), com o intuito de estabelecer um quadro comparativo entre as formulações analíticas de dimensionamento proposta pelo Eurocode 3 Parte 1.8, 2 edição do guia de projeto de ligações tubulares do CIDECT, ABNT NBR 16239:2013, pelas equações propostas por Paul e Kurobane e critérios de deformação limite. A calibração de um modelo foi feita com dados numéricos e experimentais. Para cada um dos tipos de ligações analisadas, desenvolveu-se um modelo em elementos finitos no programa Ansys. As não-linearidades física e geométrica foram incorporadas aos modelos, a fim de se mobilizar totalmente a capacidade resistente da ligação. A não-linearidade do material foi considerada com o uso do critério de plastificação de Von Mises através de uma lei constitutiva tensão versus deformação bilinear. A não-linearidade geométrica foi introduzida no modelo através da Formulação de Lagrange Atualizado considerando-se a previsão de grandes deformações de forma a permitir a redistribuição de carregamento na ligação após o escoamento inicial. Foi proposto um modelo de uma treliça espacial composta por perfis tubulares de seção circular para comparar os resultados de análises de uma ligação isolada e a resposta desta mesma ligação como parte de uma treliça em escala real.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^