910 resultados para Smart Meter
Resumo:
The evolution of classic power grids to smart grids creates chances for most participants in the energy sector. Customers can save money by reducing energy consumption, energy providers can better predict energy demand and environment benefits since lower energy consumption implies lower energy production including a decrease of emissions from plants. But information and communication systems supporting smart grids can also be subject to classical or new network attacks. Attacks can result in serious damage such as harming privacy of customers, creating economical loss and even disturb the power supply/demand balance of large regions and countries. In this paper, we give an overview about the German smart measuring architecture, protocols and security. Afterwards, we present a simulation framework which enables researchers to analyze security aspects of smart measuring scenarios.
Resumo:
Using a unique set of data and exploiting a large-scale natural experiment, we estimate the effect of real-time usage information on residential electricity consumption in Northern Ireland. Starting in April 2002, the utility replaced prepayment meters with advanced meters that allow the consumer to track usage in real-time. We rely on this event, account for the endogeneity of price and payment plan with consumption through a plan selection correction term, and find that the provision of information is associated with a decline in electricity consumption of 11-17%. We find that the reduction is robust to different specifications, selection-bias correction methods and subsamples of the original data. The advanced metering program delivers reasonably cost-effective reductions in carbon dioxide emissions, even under the most conservative usage reduction scenarios.
Resumo:
Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
This paper focuses on the problems associated with privacy protection in smart grid. We will give an overview of a possible realization of a privacy-preserving approach that encompasses privacy-utility tradeoff into a single model. This approach proposes suppression of low power frequency components as a solution to reduce the amount of information leakage from smart meter readings. We will consider the applicability of the procedure to hide the appliance usage with respect to the type of home devices.
Resumo:
Home Automation holds the potential of realizing cost savings for end users while reducing the carbon footprint of domestic energy consumption. Yet, adoption is still very low. High cost of vendor-supplied home automation systems is a major prohibiting factor. Open source systems such as FHEM, Domoticz, OpenHAB etc. are a cheaper alternative and can drive the adoption of home automation. Moreover, they have the advantage of not being limited to a single vendor or communication technology which gives end users flexibility in the choice of devices to include in their installation. However, interaction with devices having diverse communication technologies can be inconvenient for users thus limiting the utility they derive from it. For application developers, creating applications which interact with the several technologies in the home automation systems is not a consistent process. Hence, there is the need for a common description mechanism that makes interaction smooth for end users and which enables application developers to make home automation applications in a consistent and uniform way. This thesis proposes such a description mechanism within the context of an open source home automation system – FHEM, together with a system concept for its application. A mobile application was developed as a proof of concept of the proposed description mechanism and the results of the implementation are reflected upon.
Resumo:
Given there is currently a migration trend from traditional electrical supervisory control and data acquisition (SCADA) systems towards a smart grid based approach to critical infrastructure management. This project provides an evaluation of existing and proposed implementations for both traditional electrical SCADA and smart grid based architectures, and proposals a set of reference requirements which test bed implementations should implement. A high-level design for smart grid test beds is proposed and initial implementation performed, based on the proposed design, using open source and freely available software tools. The project examines the move towards smart grid based critical infrastructure management and illustrates the increased security requirements. The implemented test bed provides a basic framework for testing network requirements in a smart grid environment, as well as a platform for further research and development. Particularly to develop, implement and test network security related disturbances such as intrusion detection and network forensics. The project undertaken proposes and develops an architecture of the emulation of some smart grid functionality. The Common Open Research Emulator (CORE) platform was used to emulate the communication network of the smart grid. Specifically CORE was used to virtualise and emulate the TCP/IP networking stack. This is intended to be used for further evaluation and analysis, for example the analysis of application protocol messages, etc. As a proof of concept, software libraries were designed, developed and documented to enable and support the design and development of further smart grid emulated components, such as reclosers, switches, smart meters, etc. As part of the testing and evaluation a Modbus based smart meter emulator was developed to provide basic functionality of a smart meter. Further code was developed to send Modbus request messages to the emulated smart meter and receive Modbus responses from it. Although the functionality of the emulated components were limited, it does provide a starting point for further research and development. The design is extensible to enable the design and implementation of additional SCADA protocols. The project also defines an evaluation criteria for the evaluation of the implemented test bed, and experiments are designed to evaluate the test bed according to the defined criteria. The results of the experiments are collated and presented, and conclusions drawn from the results to facilitate discussion on the test bed implementation. The discussion undertaken also present possible future work.
Resumo:
Voltage rise is one of the main factors which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers’ resources and manage voltage rise in residential LV networks. PV is considered as the customer RE source. The suggested coordination approach in this paper includes both localized control strategy, based on local measurement, and distributed control strategy based on consensus algorithm. This approach can completely avoid maximum permissible voltage limit violation. A typical residential LV network is used as the case study where the simulated results are shown to verify the effectiveness of the proposed approach.
Resumo:
The smart grid is a highly complex system that is being formed from the traditional power grid, adding new and sophisticated communication and control devices. This will enable integrating new elements for distributed power generation and also achieving an increasingly automated operation so for actions of the utilities as for customers. In order to model such systems a bottom-up method is followed, using only a few basic elements which are structured into two layers: a physical layer for the electrical power transmission, and one logical layer for element communication. A simple case study is presented to analyse the possibilities of simulation. It shows a microgrid model with dynamic load management and an integrated approach that can process both electrical and communication flows.
Resumo:
ICINCO 2010
Resumo:
Experiences from smart grid cyber-security incidents in the past decade have raised questions on the applicability and effectiveness of security measures and protection mechanisms applied to the grid. In this chapter we focus on the security measures applied under real circumstances in today’s smart grid systems. Beginning from real world example implementations, we first review cyber-security facts that affected the electrical grid, from US blackout incidents, to the Dragonfly cyber-espionage campaign currently focusing on US and European energy firms. Provided a real world setting, we give information related to energy management of a smart grid looking also in the optimization techniques that power control engineers perform into the grid components. We examine the application of various security tools in smart grid systems, such as intrusion detection systems, smart meter authentication and key management using Physical Unclonable Functions, security analytics and resilient control algorithms. Furthermore we present evaluation use cases of security tools applied on smart grid infrastructure test-beds that could be proved important prior to their application in the real grid, describing a smart grid intrusion detection system application and security analytics results. Anticipated experimental results from the use-cases and conclusions about the successful transitions of security measures to real world smart grid operations will be presented at the end of this chapter.
Resumo:
Government initiatives in several developed and developing countries to roll-out smart meters call for research on the sustainability impacts of these devices. In principle smart meters bring about higher control over energy theft and lower consumption, but require a high level of engagement by end-users. An alternative consists of load controllers, which control the load according to pre-set parameters. To date, research has focused on the impacts of these two alternatives separately. This study compares the sustainability impacts of smart meters and load controllers in an occupied office building in Italy. The assessment is carried out on three different floors of the same building. Findings show that demand reductions associated with a smart meter device are 5.2% higher than demand reductions associated with the load controller.
Resumo:
Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.
Resumo:
Technologies such as smart meters and electricity feedback are becoming an increasingly compelling focus for HCI researchers in light of rising power prices and peak demand. We argue, however, that a pre-occupation with the goal of demand management has limited the scope of design for these technologies. In this paper we present our work-in-progress investigating the potential value of socially sharing electricity information as a means of broadening the scope of design for these devices. This paper outlines some preliminary findings gathered from a design workshop and a series of qualitative interviews with householders in Brisbane, Australia, regarding their attitudes towards electricity feedback and sharing consumption information. Preliminary findings suggest that; (1) the social sharing of electricity feedback information has the potential to be of value in better informing consumption decisions, however; (2) the potential for sharing may be constrained by attitudes towards privacy, trust and the possibility of misinformation being shared. We conclude by outlining ideas for our future research on this topic and invite comments on these ideas.
Resumo:
Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.