954 resultados para Small Round Virus Particles
Resumo:
No período de agosto de 1987 a setembro de 1988, 193 amostras de fezes de crianças, com e sem sintomatologia diarréica aguda, foram submetidas às provas diagnósticas do ensaio imunoenzimático (EIE), eletroforese em gel de poliacrilamida (EGPA) e microscopia eletrônica (ME) para a detecção de vírus. A positividade para Rotavírus, Adenovírus, Astrovírus, Calicivírus e "Small Round Virus Particles" (SRVP) foi encontrada nas 97 crianças com diarréia aguda em 11,3%, 3,1%, 2,1%, l,0%e4,l%, respectivamente. Das 96 crianças sem diarréia, 4,2% foram positivas para Rotavírus, 1,0% para Calicivírus e 7,3% para SRVP. Das 15 amostras positivas para Rotavírus, 14 apresentaram perfil eletroforético característico do Grupo A e 1 amostra do Grupo C. A análise dos eletroforotipos demonstrou a grande heterogeneidade de perfis e a predominância do perfil "longo". A associação de vírus, bactéria e parasita foi encontrada tanto em crianças com diarréia como em crianças sem diarréia.
Resumo:
The mechanisms of the systemic response associated with talc-induced pleurodesis are poorly understood. The aim of this study was to assess the acute inflammatory response and migration of talc of small. size particles injected in the pleural space. Rabbits were injected intrapleurally with talc solution containing small. or mixed particles and blood and pleural fluid samples were collected after 6, 24 or 48 h and assayed for leukocytes, neutrophils, lactate dehydrogenase, IL-8, VEGF, and TGF-beta. The lungs, spleen, liver and kidneys were assessed to study deposit of talc particles. Both types of talc produced an acute serum inflammatory response, more pronounced in the small particles group. Pleural fluid IL-8 and VEGF levels were higher in the small particle talc group. Correlation between pleural VEFG and TGF-beta levels was observed for both groups. Although talc particles were demonstrated in the organs of both groups, they were more pronounced in the small talc group. In conclusion, intrapleural injection of talc of small size particles produced a more pronounced acute systemic response and a greater deposition in organs than talc of mixed particles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO2 wafers was achieved under pH 11.6, 50 mM CaCl2, and at 70 degrees C. XG-ALG films presented mean thickness of (16 +/- 2) nun and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAIt adsorbed irreversibly onto XG-ALG forming homogenous monolayers similar to(4 +/- 1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005 mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
BM2 is the fourth integral membrane protein encoded by the influenza B virus genome. It is synthesized late in infection and transported to the plasma membrane from where it is subsequently incorporated into progeny virus particles. It has recently been reported that BM2 has ion channel activity and may be the functional homologue of the influenza A virus M2 protein acting as an ion channel involved in viral entry. Using a reverse genetic approach it was not possible to recover virus which lacked BM2. A recombinant influenza B virus was generated in which the BM2 AUG initiation codon was mutated to GUG. This decreased the efficiency of translation of BM2 protein such that progeny virions contained only 1/8 the amount of BM2 seen in wild-type virus. The reduction in BM2 incorporation resulted in a reduction in infectivity although there was no concomitant decrease in the numbers of virions released from the infected cells. These data imply that the incorporation of sufficient BM2 protein into influenza B virions is required for infectivity of the virus particles. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive, malignant neoplasm usually present with the widespread abdominal serosal involvement and affects mainly adolescents and young adults. When presenting within visceral organs, as kidney, the diagnosis of DSRCT imposes significant difficulties. We present a case of primary DSRCT of the kidney in a 10-year-old boy mimicking clinically and pathologically Wilms tumor. The tumor showed morphologic and immunohistochemical features of DSRCT and the presence of the Ewing sarcoma and Wilm tumor 1 fusion transcripts resulting from the t(11;22) (p13;q12) reciprocal translocation. DSRCT should be considered in the differential diagnosis of Wilm tumor and other small blue-round cell tumors of the kidney. © 2009 by Lippincott Williams & Wilkins.
Resumo:
Introduction: Desmoplastic small round cell tumor (DSRCT) is an uncommon, embryonic-type neoplasm, typically presenting as an abdominal mass in young men. A single case of DSRCT arising in the peripheral nervous system has been reported. Methods: The clinical course, imaging, electrophysiological, intraoperative, histopathological, molecular findings, and postoperative follow-up are reported. Results: A 43-year-old man presented with slowly progressive right brachial plexopathy. Magnetic resonance imaging revealed an enlarged medial cord with heterogeneous contrast enhancement. Histology showed a "small round cell" neoplasm with a polyphenotypic immunoprofile, including epithelial and mesenchymal markers. A pathognomonic fusion of Ewing sarcoma breakpoint region 1 and Wilms tumor 1 genes (EWSR1/WT1) was present. Treatment involved gross total excision and local radiotherapy. Conclusion: Our findings confirm the occurrence of DSRCT as a primary peripheral nerve tumor. Despite its usually very aggressive clinical course, prolonged recurrence-free survival may be reached. Histomorphology and immunoprofile of DSRCT may lead to misdiagnosis as small cell carcinoma. © 2013 Wiley Periodicals, Inc.
Resumo:
Conditions leading to a maximum range for a small, round projectile, fired by hand, are discussed taking into account air drag and the dependence of the initial speed on the mass launched. Both the optimal angle of release for given projectile and initial speed, and the optimal radius for given density (i.e., among a bed of pebbles) are determined; an increase on the height of release is found to always decrease the angle and increase the radius. The influence of the projectile mass on the optimal manner of launching is considered. The validity of the approximations used in the analysis is discussed. Results from very simple measurements show good agreement with theory.
Resumo:
Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.
Resumo:
In a previous study we demonstrated that vesicular stomatitis virus (VSV) can be used as a vector to express a soluble protein in mammalian cells. Here we have generated VSV recombinants that express four different membrane proteins: the cellular CD4 protein, a CD4-G hybrid protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic tail of the VSV glycoprotein (G), the measles virus hemagglutinin, or the measles virus fusion protein. The proteins were expressed at levels ranging from 23-62% that of VSV G protein and all were transported to the cell surface. In addition we found that all four proteins were incorporated into the membrane envelope of VSV along with the VSV G protein. The levels of incorporation of these proteins varied from 6-31% of that observed for VSV G. These results suggest that many different membrane proteins may be co-incorporated quite efficiently with VSV G protein into budding VSV virus particles and that specific signals are not required for this co-incorporation process. In fact, the CD4-G protein was incorporated with the same efficiency as wild type CD4. Electron microscopy of virions containing CD4 revealed that the CD4 molecules were dispersed throughout the virion envelope among the trimeric viral spike glycoproteins. The recombinant VSV-CD4 virus particles were about 18% longer than wild type virions, reflecting the additional length of the helical nucleocapsid containing the extra gene. Recombinant VSVs carrying foreign antigens on the surface of the virus particle may be useful for viral targeting, membrane protein purification, and for generation of immune responses.
Resumo:
We describe a heterologous, Semliki Forest virus (SFV)-driven packaging system for the production of infectious recombinant Moloney murine leukemia virus particles. The gag-pol and env genes, as well as a recombinant retrovirus genome (LTR-psi (+)-neoR-LTR), were inserted into individual SFV1 expression plasmids. Replication-competent RNAs were transcribed in vitro and introduced into the cytoplasm of BHK-21 cells using electroporation. The expressed Moloney murine leukemia virus structural proteins produced extracellular virus-like particles. In these particles the gag precursor was processed into mature products, indicating that the particles contained an active protease. The protease of the gag-pol fusion protein was also shown to be active in a trans-complementation assay using a large excess of Pr65gag. Moreover, the particles possessed reverse transcriptase (RT) activity as measured in an in vitro assay. Cotransfection of BHK-21 cells by all three SFV1 constructs resulted in the production of transduction-competent particles at 4 x 10(6) colony-forming units (cfu)/ml during a 5-hr incubation period. Altogether, 2.9 x 10(7) transduction-competent particles were obtained from about 4 x 10(6) transfected cells. Thus, this system represents the first RNA-based packaging system for the production of infectious retroviral particles. The facts that no helper virus could be detected in the virus stocks and that particles carrying the amphotropic envelope could be produced with similar efficiency as those that carry the ecotropic envelope make the system very interesting for gene therapy.
Resumo:
In human immunodeficiency virus type 1-infected cells, the efficient expression of viral proteins from unspliced and singly spliced RNAs is dependent on two factors: the presence in the cell of the viral protein Rev and the presence in the viral RNA of the Rev-responsive element (RRE). We show here that the HIV-1 Rev/RRE system can increase the expression of avian leukosis virus (ALV) structural proteins in mammalian cells (D-17 canine osteosarcoma) and promote the release of mature ALV virions from these cells. In this system, the Rev/RRE interaction appears to facilitate the export of full-length unspliced ALV RNA from the nucleus to the cytoplasm, allowing increased production of the ALV structural proteins. Gag protein is produced in the cytoplasm of the ALV-transfected cells even in the absence of a Rev/RRE interaction. However, a functional Rev/RRE interaction increases the amount of Gag present intracellularly and, more strikingly, results in the release of mature ALV particles into the supernatant. RCAS virus containing an RRE is replication-competent in chicken embryo fibroblasts; however, we have been unable to determine whether the particles produced in D-17 cells are as infectious as the particles produced in chicken embryo fibroblasts.
Resumo:
Parasitoid wasps use a variety of mechanisms to alter their host's physiology to the benefit of the developing endoparasite inside the host larva. Association of certain wasps with viruses and virus-like particles (VLPs) that contribute to their success in parasitism is one of the fascinating evolutionary adaptations conferring active or passive protection for the endoparasite from the host immune system. Venturia canescens has been shown to produce VLPs that provide protection for the developing parasitoid egg inside the host, Ephestia kuehniella. Here, we report on the presence of a novel small RNA-containing virus from V. canescens, designated as VcSRV, occurring in the ovaries of the wasp. The virus particles are found together with VcVLPs in the lumen of the calyx region of the ovaries and are injected together with the egg and VcVLPs into E kuehniella larvae where they enter hemocytes. Alignment of the RNA-dependent RNA polymerase gene of VcSRV indicates that the virus most likely belongs to the recently described genus Iflavirus. (c) 2004 Elsevier Ltd. All rights reserved.