853 resultados para Small Area Estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of Small Area Estimation is about how to produce reliable estimates of domain characteristics when the sample sizes within the domain is very small ou even zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Portuguese National Statistical Institute intends to produce estimations for the mean price of the habitation transation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local level planning requires statistics for small areas, but normally due to cost or logistic constraints, sample surveys are often planned to provide reliable estimates only for large geographical regions and large subgroups of a population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health departments, research institutions, policy-makers, and healthcare providers are often interested in knowing the health status of their clients/constituents. Without the resources, financially or administratively, to go out into the community and conduct health assessments directly, these entities frequently rely on data from population-based surveys to supply the information they need. Unfortunately, these surveys are ill-equipped for the job due to sample size and privacy concerns. Small area estimation (SAE) techniques have excellent potential in such circumstances, but have been underutilized in public health due to lack of awareness and confidence in applying its methods. The goal of this research is to make model-based SAE accessible to a broad readership using clear, example-based learning. Specifically, we applied the principles of multilevel, unit-level SAE to describe the geographic distribution of HPV vaccine coverage among females aged 11-26 in Texas.^ Multilevel (3 level: individual, county, public health region) random-intercept logit models of HPV vaccination (receipt of ≥ 1 dose Gardasil® ) were fit to data from the 2008 Behavioral Risk Factor Surveillance System (outcome and level 1 covariates) and a number of secondary sources (group-level covariates). Sampling weights were scaled (level 1) or constructed (levels 2 & 3), and incorporated at every level. Using the regression coefficients (and standard errors) from the final models, I simulated 10,000 datasets for each regression coefficient from the normal distribution and applied them to the logit model to estimate HPV vaccine coverage in each county and respective demographic subgroup. For simplicity, I only provide coverage estimates (and 95% confidence intervals) for counties.^ County-level coverage among females aged 11-17 varied from 6.8-29.0%. For females aged 18-26, coverage varied from 1.9%-23.8%. Aggregated to the state level, these values translate to indirect state estimates of 15.5% and 11.4%, respectively; both of which fall within the confidence intervals for the direct estimates of HPV vaccine coverage in Texas (Females 11-17: 17.7%, 95% CI: 13.6, 21.9; Females 18-26: 12.0%, 95% CI: 6.2, 17.7).^ Small area estimation has great potential for informing policy, program development and evaluation, and the provision of health services. Harnessing the flexibility of multilevel, unit-level SAE to estimate HPV vaccine coverage among females aged 11-26 in Texas counties, I have provided (1) practical guidance on how to conceptualize and conduct modelbased SAE, (2) a robust framework that can be applied to other health outcomes or geographic levels of aggregation, and (3) HPV vaccine coverage data that may inform the development of health education programs, the provision of health services, the planning of additional research studies, and the creation of local health policies.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high level of unemployment is one of the major problems in most European countries nowadays. Hence, the demand for small area labor market statistics has rapidly increased over the past few years. The Labour Force Survey (LFS) conducted by the Portuguese Statistical Office is the main source of official statistics on the labour market at the macro level (e.g. NUTS2 and national level). However, the LFS was not designed to produce reliable statistics at the micro level (e.g. NUTS3, municipalities or further disaggregate level) due to small sample sizes. Consequently, traditional design-based estimators are not appropriate. A solution to this problem is to consider model-based estimators that "borrow information" from related areas or past samples by using auxiliary information. This paper reviews, under the model-based approach, Best Linear Unbiased Predictors and an estimator based on the posterior predictive distribution of a Hierarchical Bayesian model. The goal of this paper is to analyze the possibility to produce accurate unemployment rate statistics at micro level from the Portuguese LFS using these kinds of stimators. This paper discusses the advantages of using each approach and the viability of its implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a framework for small area population estimation that enables users to select a method that is fit for the purpose. The adjustments to input data that are needed before use are outlined, with emphasis on developing consistent time series of inputs. We show how geographical harmonization of small areas, which is crucial to comparisons over time, can be achieved. For two study regions, the East of England and Yorkshire and the Humber, the differences in output and consequences of adopting different methods are illustrated. The paper concludes with a discussion of how data, on stream since 1998, might be included in future small area estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodic estimation, monitoring and reporting on area under forest and plantation types and afforestation rates are critical to forest and biodiversity conservation, sustainable forest management and for meeting international commitments. This article is aimed at assessing the adequacy of the current monitoring and reporting approach adopted in India in the context of new challenges of conservation and reporting to international conventions and agencies. The analysis shows that the current mode of monitoring and reporting of forest area is inadequate to meet the national and international requirements. India could be potentially over-reporting the area under forests by including many non-forest tree categories such as commercial plantations of coconut, cashew, coffee and rubber, and fruit orchards. India may also be under-reporting deforestation by reporting only gross forest area at the state and national levels. There is a need for monitoring and reporting of forest cover, deforestation and afforestation rates according to categories such as (i) natural/primary forest, (ii) secondary/degraded forests, (iii) forest plantations, (iv) commercial plantations, (v) fruit orchards and (vi) scattered trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper authors report the first demonstration of a diode laser powered Kerr effect device, consisting of a single birefringent fiber, able to phase-shift and switch an optical signal generated by a second laser diode. They have obtained fast, stable phase-shifting of 90° in a single fiber, at a coupled pump power of only 20 mW. Using this phase shift to induce polarization switching with resultant gating, 25% modulation of the diode laser signal has been observed, with a detection limited-rise time of 10ns.