933 resultados para Sludge blanket
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, the efficiency of two-stage upflow anaerobic sludge blanket (UASB) reactors was evaluated in bench scale, for treating a liquid effluent from coffee pulping. Hydraulic detention times (HDT) were 4.0; 5.2 and 6.2 days, resulting in organic loading rates (OLR) of 5.8; 3.6 and 3.0g total COD per (L-d) in the first reactor (Rl) and HDT of 2.0; 2.6 and 3.1 days with OLR of 5.8; 0.5 and 0.4 g total COD per (L-d) in the second reactor (R2). The medium values of total COD affluent varied from 15.440 to 23.040 mg O 2/L, and in the effluent to the reactors 1 and 2 were from l.lOO to 11.500 mg 0 2/L and 420 to 9.000 mg O 2/L, respectively. The medium values of removal efficiencies of total COD and TSS varied from 66 to 98% and 93 to 97%, respectively, in the system of treatment with the UASB reactors, in two stages. The content of methane in the biogas varied from 69 to 89% in the Rl and from 52 to 73% in the R2. The maximum volumetric methane production of 0.483 m 3 CH 4per (m 3 reactor d) was obtained with OLR of 3.6 g total COD per (L reactor d) and HDT of 6.2 days in the Rl. The volatile fatty acids concentration was kept below 100mg/L with HDT of 5.2 and 6.2 days in the Rl and HDT of 2.6 and 3.1 days in the R2.
Resumo:
Mode of access: Internet.
Resumo:
Response of an aerobic upflow sludge blanket (AUSB) reactor system to the changes in operating conditions was investigated by varying two principle operating variables: the oxygenation pressure and the flow recirculation rate. The oxygenation pressure was varied between 0 and 25 psig (relative), while flow recirculation rates were between 1,300 and 600% correspondingly. The AUSB reactor system was able to handle a volumetric loading of as high as 3.8 kg total organic carbon (TOC)/m(3) day, with a removal efficiency of 92%. The rate of TOC removal by AUSB was highest at a pressure of 20 psig and it decreased when the pressure was increased to 25 psig and the flow recirculation rate was reduced to 600%. The TOC removal rate also decreased when the operating pressure was reduced to 0 and 15 psig, with corresponding increase in flow recirculation rates to 1,300 and 1,000%, respectively. Maintenance of a high dissolved oxygen level and a high flow recirculation rate was found to improve the substrate removal capacity of the AUSB system. The AUSB system was extremely effective in retaining the produced biomass despite a high upflow velocity and the overall sludge yield was only 0.24-0.32 g VSS/g TOC removed. However, the effluent TOC was relatively high due to the system's operation at a high organic loading.
Resumo:
In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.
Resumo:
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC = 100 mg/L and sulphate = 500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3--N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.
Resumo:
Esta dissertação apresenta a metodologia para o Projeto de Engenharia de Reatores Anaeróbios de Fluxo Ascendente com Manta de Lodo para tratamento de esgoto sanitário. A metodologia desenvolvida apresenta os parâmetros de cálculo e os condicionamentos técnicos físicos envolvidos no projeto e construção da unidade de tratamento. O trabalho contém uma proposta de protocolo para o projeto, construção e operação do Reator UASB.
Resumo:
造纸行业是造成我国水环境有机污染物的重要污染源之一,其水污染的特点是小厂多、草浆多、工艺落后、污染扩散面广、造成废 水排放量大,每年排放的废水量约39亿立方米,占全国工业废水排放量的1/6,其中有机污染物(以BOD5计)160万吨左右,约占全 国工业废水中有机污染物总量的1/4。尤以占全国制浆造纸行业90%以上的碱法草浆造纸厂的蒸煮黑液量大面广,除含有机物外,还 含有木质素、残碱、硫化物、氯化物等污染物,属于PH值高、色度深、难于治理的高浓度有机废水,对水体污染特别严重,各地要 求治理呼声很高,急待研究并尽快找出各种有效的治理途径。对于碱法草浆蒸煮,黑液高浓度废水的治理,有各种方法,根据国内 的研究进展和我们已有试验工作表明,最经济有效,具有实用价值,在生产上可获得成功是厌氧处理法。近10多年来,国外关于高 效厌氧处理技术研究进展迅速,并出现了多种多样的工艺设备,如高效厌氧生物反应器,并在实用化方面取得了很大成绩,建立了 生产性装置,达到了高负荷运行,效果良好。本试验是根据我们已有研究基础,针对我国国情,对小型制浆造纸厂水污染防治除了 开发碱回收及各种综合利用技术外,要特别加强废水(废液)实用技术研究的指导思想,本试验采用改进型的上流式厌氧污泥床反应 器,设计了两种试验方案,通过试验结果如下。1. 试验方案I—碱法草浆黑液酸化和厌氧发酵I号UASB反应器动态模型试验结果表 明:(1). 采用中温35℃±1℃高效厌氧反应器USAB内装有填料(陶粒)和三相分离器,具有保持高浓度生物量和防止污泥流失的特点 ,污泥浓度Vs 可达30%以上,因而具有高效、节能、产能、滞留期短的优点,当进水CODcr在7500-10000mg/l,HRT由7天缩短到3天 ,有机容积负荷在1.22gCODcr/l·d-3.43gCODcr/l·d时,CODcr平均去除率可达55%-45.5%,最高CODcr去除率可达60.2-63.5%, BOD5去除率可达75.9-83.2%,沼气容积产气率可达0.29-0.67l/l·d,每克CODcr转化为沼气产率达0.39-0.48l/gCODcr·d,CH4含量 65.8-75.5%。厌氧发酵出水再用化学法进行后处理脱除难降解的木质素,CODcr总去除率达80%以上。(2). 动态试验结果表明:采 用酸化—厌氧发酵处理黑液工艺合理,技术路线可行。2. 试验方案II—黑液用化学法(Hcl)去除木质素进行厌氧发酵,II号UASB反 应器动态模型试验结果表明:(1). 采用中温35℃±1℃高效厌氧反应器UASB(内有软填料),当进水CODcr7000-13000mg/l左右,HRT 由6天缩短到1天,有机负荷由0.98gCODcr/l·d增加到11gCODcr/l·d时,COD平均去除率均可稳定在70-77%,BOD5去除率为87.3- 93.1%,沼气容积产气率0.21-2.6l/l·d,每克CODcr转化为沼气产率为0.39-0.48l/gCODcr·d,高的可达0.53l/gCODcr·d,转化 率较高,CH4含量63-70%。(2). 试验证明碱法草浆黑液物化预处理—厌氧发酵处理的技术路线也是可行的,工艺合理、效果较好。 在有条件的工厂可采用。3.厌氧发酵阶段几大类群微生物计数表明:(1). 当发酵工艺和运行处于相对稳定状态时,微生物群体的 组成也达到相对的稳定,各类微生物之间保持动态平衡关系。当产乙酸菌的数量为107-108个/ml时,产甲烷菌的数量为105-106 个/ml,当产乙酸菌数量为106-107个/ml时,产甲烷菌的数量为103-105个/ml。(2).稳态运行条件下,黑液预处理为甲烷发酵创造 了有利的生态环境,获得了较好的处理效果和较高的COD转化为沼气的产率0.39-0.48l/g·CODcr·d,反应器中形成较为稳定而数 量较下水污泥中高1-2个数量级的厌氧发酵微生物区系组成。这一结果为黑液厌氧发酵提供了微生物理论依据。Paper industry is one of the important pollution source of water environment in our country. Its character of water pollution is many small factories, much grass pulp, disadvantageous technique, large preading area of pullution. Its effluent makes up 1/6 of whole country's industry wastwater. Its organic pollutant accounts 1/4 of whole country's. Alkaline grass paper pulp effluent with pollutants such as ligoin, remaining alkali sulfide, chloride besides organic material, is a kind of high concentrate organic wastewater which has high PH walug, dark colour and is difficult in treatment. There is urgent require to find ways to treat the wastewater. There are different ways to treat alkaline paper grass pulp effluent. According to the research advances and our experiment work, the most economical and useful way is anaerobic degradation which was advanced quick in last ten years. In the control of waste water of small pulp paper mill, the study of wastewater utilization technology should be emphasized, besides alkaline retrieving and different kinds of comprehensive utilization technology. Our experiment used modified UASB(Upflow Anaerobic Sludge Blanket Reactor). Two kinds of plan were disgned. The results are lined below. 1. The first experiment plant-aciding black pulp effluent and methanogenic digestion. The dynamic model experiment results of I-UASB reactor showed: (1)The mesophilic(35℃±1℃)high effect UASB reactor having haydite and threee state seperation in it had the character of keeping high bioimass concentration and preventing losss of sludge. It had advantages of high effect, energe saving, energe prodcing and short HRT(Hydroulic retention time). When the influent COD was 7500-10000mg, HRT was shortened from 7 days to 3days, organic loading rate was 1.22g-3.43COD/l· d, the average COD removal efficiency was 55%-45%. The highest COD efficiency was 60.2-63.5%, BOD removal of 75.9 -83.4% was achieved. Biogass production rate were up to 0.29-0.67l/l·d. Biogass converted efficiency from every gram of COD could reach 0.39-0.48l/gCOD·d. Methane content was 65.0-75.5%. Chemical method was used to deplate lignin in anaerobic digestion effluent. Total COD removal efficiency could be more than 80%. (2)Using aciding annaerobic digestion to treat the black effluent was reseanable in technique and technology. 2. The second experiment plan-anaerobic digestion was used after the chemical method was used to deplate lignin in the black effluent. The result of dynamic experiment of II-UASB reactor showed: (1)High effect mesophilic (35℃±1℃)UASB reactor having soft slaffing in was used. When influent COD was about 7000-13000mg/l, HRT was shortened from 6 days to 1 day and organic loading rate was increased from 0.90 to 11g COD /l·d, average COD removal efficiency remained stable on 70-77%. BOD, removal efficiency was between 87.3-93.1%. Biogass production rate was 0.2-2.6l/l ·d .Biogass converted efficiency from a gram of COD was 0.39-0.481/gCOD·d with the high value of 0.53l/gCOD·d. Methane content was 63-70%. (2)The way that using physical, chemical Pre-treatment-anaerobic digestion to treat alkaline black effluent is feasible and can be used in some factories when the condition exists. 3. Counting of several class of microoganisms in anaerobic digestion stage showed: (1)As the disgestion was in stable motion, the compositon of microorganic colony could get relative stable. Dynamic balance was remaining among different kinds of microorganism such as methanogenic bacteria, Acidogenic bacteria, sulfate reducing bacteria, and heterotrophic bacteria. (2)Under stable motion, the pre-treatment of black effluent produced favourable eco-enviroment for methanegenic digestion. Good treatment effect and high biogass convertent efficiency from COD(0.39-0.48l/g·COD· d)were gotten. Some stable and high quantity(10-100times more than sewage sludge)microorganism colony were formed in the reactor. This result provided theoretical basis for anaerobic digestion of black effluent.
Resumo:
Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.
Resumo:
Grass biomethane has been shown to be a sustainable gaseous transport biofuel, with a good energy balance, and significant potential for economic viability. Of issue for the designer is the variation in characteristics of the grass depending on location of source, time of cut and species. Further confusion arises from the biomethane potential tests (BMP) which have a tendency to give varying results. This paper has dual ambitions. One of these is to highlight the various results for biomethane potential that may be obtained from the same grass silage. The results indicated that methane potential from the same grass silage varied from 350 to 493 L CH4 kg−1 VS added for three different BMP procedures. The second ambition is to attempt to compare two distinct digestion systems again using the same grass: a two stage continuously stirred tank reactor (CSTR); and a sequentially fed leach bed reactor connected to an upflow anaerobic sludge blanket (SLBR–UASB). The two engineered systems were designed, fabricated, commissioned and operated at small pilot scale until stable optimal operating conditions were reached. The CSTR system achieved 451 L CH4 kg−1 VS added over a 50 day retention period. The SLBR–UASB achieved 341 L CH4 kg−1 VS added at a 30 day retention time.
Resumo:
Phycoremediation of swine wastewaters has been widely reported as an attractive tertiary treatment system, that effectively removes the excessive nutrient loadswhilst offering a valuable source of feedstock biomass. Digestate from an upflow anaerobic sludge blanket (UASB, 6%v/v) and a nitrification reactor (NR; 50% v/v) were used as culturing media to microalgae. Experiments were carried out in lab scale photobioreactors (PBRs) using a consortia of Chlorella and Scenedesmus. Ammonia (44 to 90%) and phosphorus (77%) were efficiently removed from both effluents tested after 4 days. Microalgae biomass harvested from the UASB effluent showed 57, 34 and 1% of proteins, carbohydrates and lipids, respectively. Comparatively, the cellular composition of microalgae grown on NR effluent had lower protein (43%) but higher carbohydrate (42%) contents. Negligible difference in lipid fraction was observed independently of the effluents tested. The results suggest that the biomass harvested from phycoremediation of swine wastewaters can offer a valuable protein and carbohydrate feedstock for nutritional and biotechnological applications.
A biochemical predictor of performance during mesophilic anaerobic fermentation of starch wastewater
Resumo:
The aim of this study was to determine the potential of biochemical parameters, such as enzyme activity and adenosine triphosphate (ATP) levels, as monitors of process performance in the Upflow Anaerobic Sludge Blanket (UASB) reactor utilizing a starch wastewater. The acid and alkaline phosphatase activity and the ATP content of the UASB sludge were measured in response to changes in flow rate and nutrient loading. Conventional parameters of process performance, such as gas production, acetic acid production, COD, phosphorus, nitrogen and suspended solids loadings and % COD removal were also monitored. The response of both biochemical and conventional parameters to changing process conditions was then compared. Alkaline phosphatase activity exhibited the highest activity over the entire study perioda A high suspended solids loading was observed to upset the system in terms of gas production, acetic acid production and % COD removala The initial rate of increase in alkaline phosphatase activity following an increase in loading was four times as great during process upset than under conditions of good performance. The change in enzyme actiVity was also more sensitive to process upset than changes in acetic acid production. The change in ATP content of the sludge with time suggested that enzyme actiVity was changing independently of the actual viable biomass present. The bacterial composition of the anaerobic sludge granules was similar to that of other sludge bed systems, at the light and scanning electron microscope level. Isolated serum bottle cultures produced several acids involved in anaerobic carbohydrate metabolism. The overall performance of the UASB system indicated that higher loadings of soluble nutrients could have been tolerated by the system.
Resumo:
This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to compare two anaerobic reactor conflgurations, a hybrid upflow anaerobic sludge blanket (UASBh) reactor and an anaerobic sequencing batch reactor with immobilised biomass (ASBBR) treating dairy effluents. The reactors were fed with effluent from the milk pasteurisation process (effluent 1-E1) and later with effluent from the same process combined with the one from the cheese manufacturing (effluent 2-E2). The ASBBR reactor showed average organic matter removal efficiency of 95.2% for E1 and 93.5% for E2, while the hybrid UASB reactor showed removal efficiencies of 90.3% and 80.1% respectively.