277 resultados para Slough


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In October 1970, Moss Landing Marine Laboratories began an observational program to determine/the seasonal changes in the water chemistry of Elkhorn Slough and Moss Landing Harbor. This data report contains the first year of data (October 1970 - November 1971). These data are of immediate interest in determining the flushing and mixing mechanisms of the slough and in establishing the effect that local domestic and industrial effluents have on the distribution of these chemical parameters. (Document contains 78 Pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From October 1970 through February 1972, temperature, salinity, dissolved oxygen, secchi depth and five major nutrients were observed at approximately monthly intervals in Elkhorn Slough and Moss Landing Harbor. In addition, similar hourly observations were made during two tidal studies during the wet and dry seasons. From the salinity measurements during the summer, a salt balance for Elkhorn Slough is formulated and rnean eddy diffusion coefficients are determined. The diffusion nlodel applied to longitudinal phosphate distributions yielded a mean diffusive flux of 12 kg P04/day (140 pg-at/m^2/day) for the area above the mean tidal prism. Consistent differences, apparently due to differing regenerati on ra tes, were observed in the phosphate and nitrogen distributions. Bottom sediments are proposed as a possible source for phosphate and as a sink for fixed nitrogen. Dairy farms located along central Elkhorn Slough are apparently a source for reduced nitrogen. During summer, nitrogen was found to be the limiting nutrient for primary production in the upper slough. Tidal observations indicated fresh water of high nutrient concentration consistently entered the harbor from fresh water sources to the south. This source water had a probable phosphate concentration of 40 to 60 ug-at/l and seasonally varying P:N ratio of 1:16 and 1:5 during the winter and summer respectively. Net production and respiration rates are calculated from diurnal variations in dissolved oxygen levels observed in upper Elkhorn Slough. Changes in phosphate associated with the variations in oxygen was close to the accepted ratio of 1:276 by atoms. Document is 88 pages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In July 1974, we began a two-year baseline study of the Moss Landing Elkhorn Slough marine environment for Pacific Gas and Electric Company as mandated by the Coastal Commission. The original proposal included strong recommendations for more complete oceanographic studies and a third year of data collection. These further studies were not funded. This report is divided into three sections: oceanography, benthic invertebrate ecology and fish and zooplankton ecology. (PDF contains 480 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In July, 1974 we began a baseline study of the Moss Landing-Elkhorn Slough marine environment for PG&E as mandated by the Coastal Commission. This report constitutes results of the first year's program. It is divided into three sections, oceanography, benthic invertebrate ecology, and fish and zooplankton ecology. (PDF contains 226 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elkhorn Slough was first exposed to direct tidal forcing from the waters of Monterey Bay with the construction of Moss Landing Harbor in 1946. Elkhorn Slough is located mid-way between Santa Cruz and Monterey close to the head of Monterey Submarine Canyon. It follows a 10 km circuitous path inland from its entrance at Moss Landing Harbor. Today, Elkhorn Slough is a habitat and sanctuary for a wide variety of marine mammals, fish, and seabirds. The Slough also serves as a sink and pathway for various nutrients and pollutants. These attributes are directly or indirectly affected by its circulation and physical properties. Currents, tides and physical properties of Elkhorn Slough have been observed on an irregular basis since 1970. Based on these observations, the physical characteristics of Elkhorn Slough are examined and summarized. Elkhorn Slough is an ebb-dominated estuary and, as a result, the rise and fall of the tides is asymmetric. The fact that lower low water always follows higher high water and the tidal asymmetry produces ebb currents that are stronger than flooding currents. The presence of extensive mud flats and Salicornia marsh contribute to tidal distortion. Tidal distortion also produces several shallow water constituents including the M3, M4, and M6 overtides and the 2MK3 and MK3 compound tides. Tidal elevations and currents are approximately in quadrature; thus, the tides in Elkhorn Slough have some of the characters of a standing wave system. The temperature and salinity of lower Elkhorn Slough waters reflect, to a large extent, the influence of Monterey Bay waters, whereas the temperature and salinity of the waters of the upper Slough (>5 km from the mouth) are more sensitive to local processes. During the summer, temperature and salinity are higher in the upper slough due to local heating and evaporation. Maximum tidal currents in Elkhorn Slough have increased from approximately 75 to 120 cm/s over the past 30 years. This increase in current speed is primarily due to the change in tidal prism which has increased from approximately 2.5 to 6.2 x 106 m3 between 1956 and 1993. The increase in tidal prism is the result of both 3 rapid man-made changes to the Slough, and the continuing process of tidal erosion. Because of the increase in the tidal prism, the currents in Elkhorn Slough exhibit positive feedback, a process with uncertain consequences. [PDF contains 55 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term trends in the elasmobranch assemblage of Elkhorn Slough, Monterey Bay, California, were analyzed by documenting species composition and catch per unit effort (CPUE) from 55 sport fishing derbies that occurred during May, June, and July, from 1951 until 1995. The most abundant species (bat ray, Myliobatis californica; shovelnose guitarfish, Rhinobatos productus; and leopard shark, Triakis semifasciata) were also analyzed for size-weight relationships, trends in size class distribution, stage of maturity, and sex ratios. Changes in species composition over the course of the derbies included the near complete disappearance of shovelnose guitarfish by the 1970’s and a slight increase in the abundance of minor species (mainly smoothhounds, Mustelus spp., and thornback, Platyrhinoidis triseriata) starting in the mid 1960’s. The relative abundance of bat rays in the catch steadily increased over the years while the relative abundance of leopard sharks declined during the last two decades. However the average number of bat rays and leopard sharks caught per derby declined during the last two decades. Fishing effort appeared to increase over the course of the derbies. There were no dramatic shifts in the size class distribution data for bat rays, leopard sharks, or shovelnose guitarfish. The catch of bat rays and leopard sharks was consistently dominated by immature individuals, while the catch of shovelnose guitarfish was heavily dominated by adults. There was evidence of sexual segregation in either immature or mature fish in all the species. Female bat rays and shovelnose guitarfish were larger than their male counterparts and outnumbered males nearly 2:1. Female and male leopard sharks were more nearly equal in size and sex ratio. Changes in species composition are likely due to fishing pressure, shifts in the prevailing oceanographic conditions, and habitat alteration in Elkhorn Slough. The sex ratios, stage of maturity, and size class distributions provide further evidence for the theory that Elkhorn Slough functions as a nursery habitat for bat rays and leopard sha

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular landscape patterning arises from spatially-dependent feedbacks, and can undergo catastrophic loss in response to changing landscape drivers. The central Everglades (Florida, USA) historically exhibited regular, linear, flow-parallel orientation of high-elevation sawgrass ridges and low-elevation sloughs that has degraded due to hydrologic modification. In this study, we use a meta-ecosystem approach to model a mechanism for the establishment, persistence, and loss of this landscape. The discharge competence (or self-organizing canal) hypothesis assumes non-linear relationships between peat accretion and water depth, and describes flow-dependent feedbacks of microtopography on water depth. Closed-form model solutions demonstrate that 1) this mechanism can produce spontaneous divergence of local elevation; 2) divergent and homogenous states can exhibit global bi-stability; and 3) feedbacks that produce divergence act anisotropically. Thus, discharge competence and non-linear peat accretion dynamics may explain the establishment, persistence, and loss of landscape pattern, even in the absence of other spatial feedbacks. Our model provides specific, testable predictions that may allow discrimination between the self-organizing canal hypotheses and competing explanations. The potential for global bi-stability suggested by our model suggests that hydrologic restoration may not re-initiate spontaneous pattern establishment, particularly where distinct soil elevation modes have been lost. As a result, we recommend that management efforts should prioritize maintenance of historic hydroperiods in areas of conserved pattern over restoration of hydrologic regimes in degraded regions. This study illustrates the value of simple meta-ecosystem models for investigation of spatial processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Privately printed."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: This report presents what we have learned about tree islands of Shark Slough and adjacent marshes of Everglades National Park (ENP), based on ecological studies carried out in these wetlands during the period 2000-2003. The tree islands of Shark Slough share many features with tree islands elsewhere in the Everglades. Their current composition and community structure is determined to a large extent by recent hydrology, as well as by disturbances (fire, freezes, hurricanes, man). Tree islands have historical, cultural, and biological values that are recognized by nearly all parties to the Comprehensive Everglades Restoration Plan (CERP). Maintaining and/or restoring the health of tree islands are major objectives of CERP. Consequently, there is a need within CERP for tools to assess the health of tree islands, and to relate these measures to the hydrologic regime to which they are exposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.