64 resultados para Slotted
Resumo:
In this paper we consider the case of large cooperative communication systems where terminals use the protocol known as slotted amplify-and-forward protocol to aid the source in its transmission. Using the perturbation expansion methods of resolvents and large deviation techniques we obtain an expression for the Stieltjes transform of the asymptotic eigenvalue distribution of a sample covariance random matrix of the type HH† where H is the channel matrix of the transmission model for the transmission protocol we consider. We prove that the resulting expression is similar to the Stieltjes transform in its quadratic equation form for the Marcenko-Pastur distribution.
Resumo:
In this paper we analyze the performance degradation of slotted amplify-and-forward protocol in wireless environments with high node density where the number of relays grows asymptotically large. Channel gains between source-destination pairs in such networks can no longer be independent. We analyze the degradation of performance in such wireless environments where channel gains are exponentially correlated by looking at the capacity per channel use. Theoretical results for eigenvalue distribution and the capacity are derived and compared with the simulation results. Both analytical and simulated results show that the capacity given by the asymptotic mutual information decreases with the network density.
Resumo:
Abstract—In this paper we investigate the capacity of a general class of the slotted amplify and forward (SAF) relaying protocol where multiple, though a finite number of relays may transmit in a given cooperative slot and the relay terminals being half-duplex have a finite slot memory capacity. We derive an expression for the capacity per channel use of this generalized SAF channel assuming all source to relay, relay to destination and source to destination channel gains are independent and modeled as complex Gaussian. We show through the analysis of eigenvalue distributions that the increase in limiting capacity per channel use is marginal with the increase of relay terminals.
Resumo:
In this paper, we review the sequential slotted amplify-decode-and-forward (SADF) protocol with half-duplex single-antenna and evaluate its performance in terms of pairwise error probability (PEP). We obtain the PEP upper bound of the protocol and find out that the achievable diversity order of the protocol is two with arbitrary number of relay terminals. To achieve the maximum achievable diversity order, we propose a simple precoder that is easy to implement with any number of relay terminals and transmission slots. Simulation results show that the proposed precoder achieves the maximum achievable diversity order and has similar BER performance compared to some of the existing precoders.
Resumo:
Distributed space-time coding (DSTC) exploits the concept of cooperative diversity and space-time coding to offer a powerful bandwidth efficient solution with improved diversity. In this paper, we evaluate the performance of DSTC with slotted amplify-and-forward protocol (SAF). Relay nodes between the source and the destination nodes are grouped into two relay clusters based on their respective locations and these relay clusters cooperate to transmit the space-time coded signal to the destination node in different time frames. We further extend the proposed Slotted-DSTC to Slotted DSTC with redundant code (Slotted-DSTC-R) protocol where the relay nodes in both relay clusters forward the same space-time coded signal to the destination node to achieve a higher diversity order.
Resumo:
In this paper, we propose a novel relay ordering and scheduling strategy for the sequential slotted amplify-and-forward (SAF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are grouped into two relay clusters based on their respective locations. The proposed strategy achieves partial relay isolation and decreases the decoding complexity at the destination. We show that the DMT upper bound of sequential-SAF with the proposed strategy outperforms other amplify and forward protocols and is more practical compared to the relay isolation assumption made in the original paper [1]. Simulation result shows that the sequential-SAF protocol with the proposed strategy has better outage performance compared to the existing AF and non-cooperative protocols in high SNR regime.
Resumo:
In this paper, we propose a novel slotted hybrid cooperative protocol named the sequential slotted amplify-decodeand-forward (SADF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are divided into two different groups and each relay either amplifies or decodes the received signal. We first compute the optimal DMT of the proposed protocol with the assumption of perfect decoding at the DF relays. We then derive the DMT closed-form expression of the proposed sequential-SADF and obtain the proximity gain bound for achieving the optimal DMT. With the proximity gain bound, we then found the distance ratio to achieve the optimal DMT performance. Simulation result shows that the proposed protocol with high proximity gain outperforms other cooperative communication protocols in high SNR regime.
Resumo:
In cooperative communication systems, several wireless communication terminals collaborate to form a virtual-multiple antenna array system and exploit the spatial diversity to achieve a better performance. This thesis proposes a practical slotted protocol for cooperative communication systems with half-duplex single antennas. The performance of the proposed slotted cooperative communication protocol is evaluated in terms of the pairwise error probability and the bit error rate. The proposed protocol achieves the multiple-input single-output performance bound with a novel relay ordering and scheduling strategy.
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
The requirement of isolated relays is one of the prime obstacles in utilizing sequential slotted cooperative protocols for Vehicular Ad-hoc Networks (VANET). Significant research advancement has taken place to improve the diversity multiplexing trade-off (DMT) of cooperative protocols in conventional mobile networks without much attention on vehicular ad-hoc networks. We have extended the concept of sequential slotted amplify and forward (SAF) protocols in the context of urban vehicular ad-hoc networks. Multiple Input Multiple Output (MIMO) reception is used at relaying vehicular nodes to isolate the relays effectively. The proposed approach adds a pragmatic value to the sequential slotted cooperative protocols while achieving attractive performance gains in urban VANETs. We have analysed the DMT bounds and the outage probabilities of the proposed scheme. The results suggest that the proposed scheme can achieve an optimal DMT similar to the DMT upper bound of the sequential SAF. Furthermore, the outage performance of the proposed scheme outperforms the SAF protocol by 2.5 dB at a target outage probability of 10-4.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
In this paper we have proposed and implemented a joint Medium Access Control (MAC) -cum- Routing scheme for environment data gathering sensor networks. The design principle uses node 'battery lifetime' maximization to be traded against a network that is capable of tolerating: A known percentage of combined packet losses due to packet collisions, network synchronization mismatch and channel impairments Significant end-to-end delay of an order of few seconds We have achieved this with a loosely synchronized network of sensor nodes that implement Slotted-Aloha MAC state machine together with route information. The scheme has given encouraging results in terms of energy savings compared to other popular implementations. The overall packet loss is about 12%. The battery life time increase compared to B-MAC varies from a minimum of 30% to about 90% depending on the duty cycle.
Resumo:
In this paper, we study the behaviour of the slotted Aloha multiple access scheme with a finite number of users under different traffic loads and optimize the retransmission probability q(r) for various settings, cost objectives and policies. First, we formulate the problem as a parameter optimization problem and use certain efficient smoothed functional algorithms for finding the optimal retransmission probability parameter. Next, we propose two classes of multi-level closed-loop feedback policies (for finding in each case the retransmission probability qr that now depends on the current system state) and apply the above algorithms for finding an optimal policy within each class of policies. While one of the policy classes depends on the number of backlogged nodes in the system, the other depends on the number of time slots since the last successful transmission. The latter policies are more realistic as it is difficult to keep track of the number of backlogged nodes at each instant. We investigate the effect of increasing the number of levels in the feedback policies. Wen also investigate the effects of using different cost functions (withn and without penalization) in our algorithms and the corresponding change in the throughput and delay using these. Both of our algorithms use two-timescale stochastic approximation. One of the algorithms uses one simulation while the other uses two simulations of the system. The two-simulation algorithm is seen to perform better than the other algorithm. Optimal multi-level closed-loop policies are seen to perform better than optimal open-loop policies. The performance further improves when more levels are used in the feedback policies.
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M