891 resultados para Slender masonry structures
Resumo:
Tese de Doutoramento em Engenharia Civil (área de especialização em Engenharia de Estruturas).
Resumo:
The paper describes the preliminary studies of University of Minho on the use of Electric Impedance/Resistance Tomography to assess masonry structures. The study is focused on the analysis of values of current and voltage resulting from the use of an electrical source with voltage and frequency values from a distribution network. The analysis is made from results obtained through computer simulations, using a three-dimensional model of the idealized masonry structures. A finite element program was used for the simulations. Three types of electrodes were used in simulations, and the analysis of the results led to significant conclusions. Later masonry specimens were built and a series of preliminary tests were carried out in the laboratory. The comparative analysis of simulated and experimental results allowed identifying the factors that have influence on the physical results.
Resumo:
In this work seismic upgrading of existing masonry structures by means of hysteretic ADAS dampers is treated. ADAS are installed on external concrete walls, which are built parallel to the building, and then linked to the building's slab by means of steel rod connection system. In order to assess the effectiveness of the intervention, a parametric study considering variation of damper main features has been conducted. To this aim, the concepts of equivalent linear system (ELS) or equivalent viscous damping are deepen. Simplified equivalent linear model results are then checked respect results of the yielding structures. Two alternative displacement based methods for damper design are herein proposed. Both methods have been validated through non linear time history analyses with spectrum compatible accelerograms. Finally ADAS arrangement for the non conventional implementation is proposed.
Resumo:
The assessment of historical structures is a significant need for the next generations, as historical monuments represent the community’s identity and have an important cultural value to society. Most of historical structures built by using masonry which is one of the oldest and most common construction materials used in the building sector since the ancient time. Also it is considered a complex material, as it is a composition of brick units and mortar, which affects the structural performance of the building by having different mechanical behaviour with respect to different geometry and qualities given by the components.
Resumo:
This paper shows the results of an experimental analysis on the bell tower of “Chiesa della Maddalena” (Mola di Bari, Italy), to better understand the structural behavior of slender masonry structures. The research aims to calibrate a numerical model by means of the Operational Modal Analysis (OMA) method. In this way realistic conclusions about the dynamic behavior of the structure are obtained. The choice of using an OMA derives from the necessity to know the modal parameters of a structure with a non-destructive testing, especially in case of cultural-historical value structures. Therefore by means of an easy and accurate process, it is possible to acquire in-situ environmental vibrations. The data collected are very important to estimate the mode shapes, the natural frequencies and the damping ratios of the structure. To analyze the data obtained from the monitoring, the Peak Picking method has been applied to the Fast Fourier Transforms (FFT) of the signals in order to identify the values of the effective natural frequencies and damping factors of the structure. The main frequencies and the damping ratios have been determined from measurements at some relevant locations. The responses have been then extrapolated and extended to the entire tower through a 3-D Finite Element Model. In this way, knowing the modes of vibration, it has been possible to understand the overall dynamic behavior of the structure.
Resumo:
Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.
Resumo:
A partire dal 1986, nell’Olanda settentrionale si sta verificando un incremento di fenomeni sismici superficiali di medio-bassa intensità. Siccome la zona è considerata a basso rischio sismico, tali fenomeni sono legati all’estrazione di gas nella regione Groningen situata a nord-est del paese, la quale rappresenta il più grande giacimento d’Europa. Di conseguenza, si sono verificati danni ingenti sulle strutture che sorgono in zona, che di fatto non erano state progettate per resistere a forze orizzontali legate all’accelerazione del suolo. Ricercatori, aziende e università sono stati coinvolti nel progetto di ricerca finalizzato alla valutazione della vulnerabilità sismica delle costruzioni esistenti, in modo da poter avviare interventi di miglioramento o adeguamento sismico. A questo scopo, presso l’università tecnica di Delft sono stati svolti diversi test sperimentali e analitici su murature non rinforzate tipiche olandesi, che rappresentano la tipologia costruttiva più diffusa e si distinguono per la presenza di maschi murari snelli, grandi aperture e inadeguatezza delle connessioni tra gli elementi strutturali. Lo scopo della tesi è verificare l’adeguatezza del modello a telaio equivalente implementato nel software 3Muri per la modellazione di due tipiche case a schiera in muratura non rinforzata. Tali case, precedentemente ricostruite e testate in laboratorio attraverso un’analisi pushover, differiscono per metodologia costruttiva ed i materiali utilizzati.
Resumo:
Historic vaulted masonry structures often need strengthening interventions that can effectively improve their structural performance, especially during seismic events, and at the same time respect the existing setting and the modern conservation requirements. In this context, the use of innovative materials such as fiber-reinforced composite materials has been shown as an effective solution that can satisfy both aspects. This work aims to provide insight into the computational modeling of a full-scale masonry vault strengthened by fiber-reinforced composite materials and analyze the influence of the arrangement of the reinforcement on the efficiency of the intervention. At first, a parametric model of a cross vault focusing on a realistic representation of its micro-geometry is proposed. Then numerical modeling, simulating the pushover analyses, of several barrel vaults reinforced with different reinforcement configurations is performed. Finally, the results are collected and discussed in terms of force-displacement curves obtained for each proposed configuration.
Resumo:
Although the issue of the out-of-plane response of unreinforced masonry structures under earthquake excitation is well known with consensus among the research community, this issue is simultaneously one of the more complex and most neglected areas on the seismic assessment of existing buildings. Nonetheless, its characterization should be found on the solid knowledge of the phenomenon and on the complete understanding of methodologies currently used to describe it. Based on this assumption, this article presents a general framework on the issue of the out-of-plane performance of unreinforced masonry structures, beginning with a brief introduction to the topic, followed by a compact state of art in which the principal methodologies proposed to assess the out-of-plane behavior of unreinforced masonry structures are presented. Different analytical approaches are presented, namely force and displacement-based, complemented with the presentation of existing numerical tools for the purpose presented above. Moreover, the most relevant experimental campaigns carried out in order to reproduce the phenomenon are reviewed and briefly discussed.
Resumo:
Stone masonry is one of the oldest and most worldwide used building techniques. Nevertheless, the structural response of masonry structures is complex and the effective knowledge about their mechanical behaviour is still limited. This fact is particularly notorious when dealing with the description of their out-of-plane behaviour under horizontal loadings, as is the case of the earthquake action. In this context, this paper describes an experimental program, conducted in laboratory environment, aiming at characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls. In the scope of this campaign, six full-scale sacco stone masonry specimens were fully characterised regarding their most important mechanic, geometric and dynamic features and were tested resorting to two different loading techniques under three distinct vertical pre-compression states; three of the specimens were subjected to an out-of-plane surface load by means of a system of airbags and the remaining were subjected to an out-of-plane horizontal line-load at the top. From the experiments it was possible to observe that both test setups were able to globally mobilize the out-of-plane response of the walls, which presented substantial displacement capacity, with ratios of ultimate displacement to the wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity. Finally, very interesting results were also obtained from a simple analytical model used herein to compute a set of experimental-based ratios, namely between the maximum stability displacement and the wall thickness for which a mean value of about 60 % was found.
Resumo:
In the investigation and diagnosis of damages to historical masonry structures, the state of stress of the masonry is an important characteristic that must be determined with as much accuracy as possible. Flat-jack testing is a traditional method used to determine the state of stress in historical masonry structures. However, when irregular masonry is tested the method can cause damage to the masonry units and the accuracy of the method is reduced. An enhanced technique, called tube-jack testing, is being developed at the University of Minho to reduce the damage caused during testing and improve the accuracy when used on irregular masonry. This method uses multiple cylindrical jacks inserted in a line of holes drilled in the mortar joints of the masonry, avoiding damage to the masonry units. Concurrently with the development of tube-jack testing, the effect of stress state on sonic testing is being studied. Sonic testing is often used to determine locations of voids and damage in masonry. The focus of these studies was to determine if the state of stress is influencing the sonic test results. In this paper the results of tube-jack testing and sonic testing on masonry walls, built for the purpose of this study in the laboratory, loaded in compression is presented. The tube-jack testing is used to estimate the state of stress in the masonry and the sonic test results are evaluated based on the effect of the applied load on the wall. Future testing and study are suggested for continued development of these test methods.
Numerical Assessment of the out-of-plane response of a brick masonry structure without box behaviour
Resumo:
This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the
Resumo:
Recent durability studies have shown the susceptibility of bond in fiber-reinforced polymer (FRP) strengthened masonry components to hygrothermal exposures. However, it is not clear how this local material degradation affects the global behavior of FRP-strengthened masonry structures. This study addresses this issue by numerically investigating the nonlinear behavior of FRP-masonry walls after aging in two different environmental conditions. A numerical modeling strategy is adopted and validated with existing experimental tests on FRP-strengthened masonry panels. The model, once validated, is used for modeling of four hypothetical FRP-strengthened masonry walls with different boundary conditions, strengthening schemes, and reinforcement ratios. The nonlinear behavior of the walls is then simulated before and after aging in two different environmental conditions. The degradation data are taken from previous accelerated aging tests. The changes in the failure mode and nonlinear response of the walls after aging are presented and discussed.
Resumo:
Externally bonded strengthening of masonry structures using Fiber Reinforced Polymers (FRPs) has been accepted as a promising technique. Although the effectiveness of FRPs in improving the performance of masonry components has been extensively investigated, their long-term performance and durability remain poorly addressed. This paper, tackling one of the aspects related to durability of these systems, presents an experimental investigation on the effect of long-term (one year) water immersion on the performance of GFRP-strengthened bricks. The tests include materials' mechanical tests, as well as pull-off and single-lap shear bond tests, to investigate the changes in material properties and bond behavior with immersion time, respectively. The effect of mechanical surface treatment on the durability of the strengthened system as well as the reversibility of the degradation upon partial drying are also investigated. The experimental results are presented and critically discussed.
Resumo:
Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.