946 resultados para Sleep Wake Disorders


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE This study is a prospective, controlled clinical and electrophysiologic trial examining the chronic course of posttraumatic sleep-wake disturbances (SWD). METHODS We screened 140 patients with acute, first-ever traumatic brain injury of any severity and included 60 patients for prospective follow-up examinations. Patients with prior brain trauma, other neurologic or systemic disease, drug abuse, or psychiatric comorbidities were excluded. Eighteen months after trauma, we performed detailed sleep assessment in 31 participants. As a control group, we enrolled healthy individuals without prior brain trauma matched for age, sex, and sleep satiation. RESULTS In the chronic state after traumatic brain injury, sleep need per 24 hours was persistently increased in trauma patients (8.1 ± 0.5 hours) as compared to healthy controls (7.1 ± 0.7 hours). The prevalence of chronic objective excessive daytime sleepiness was 67% in patients with brain trauma compared to 19% in controls. Patients significantly underestimated excessive daytime sleepiness and sleep need, emphasizing the unreliability of self-assessments on SWD in trauma patients. CONCLUSIONS This study provides prospective, controlled, and objective evidence for chronic persistence of posttraumatic SWD, which remain underestimated by patients. These results have clinical and medicolegal implications given that SWD can exacerbate other outcomes of traumatic brain injury, impair quality of life, and are associated with public safety hazards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to assess sleep-wake habits and disorders and excessive daytime sleepiness (EDS) in an unselected outpatient epilepsy population. Sleep-wake habits and presence of sleep disorders were assessed by means of a clinical interview and a standard questionnaire in 100 consecutive patients with epilepsy and 90 controls. The questionnaire includes three validated instruments: the Epworth Sleepiness Scale (ESS) for EDS, SA-SDQ for sleep apnea (SA), and the Ullanlinna Narcolepsy Scale (UNS) for narcolepsy. Sleep complaints were reported by 30% of epilepsy patients compared to 10% of controls (p=0.001). The average total sleep time was similar in both groups. Insufficient sleep times were suspected in 24% of patients and 33% of controls. Sleep maintenance insomnia was more frequent in epilepsy patients (52% vs. 38%, p=0.06), whereas nightmares (6% vs. 16%, p=0.04) and bruxism (10% vs. 19%, p=0.07) were more frequent in controls. Sleep onset insomnia (34% vs. 28%), EDS (ESS >or=10, 19% vs. 14%), SA (9% vs. 3%), restless legs symptoms (RL-symptoms, 18% vs. 12%) and most parasomnias were similarly frequent in both groups. In a stepwise logistic regression model loud snoring and RL-symptoms were found to be the only independent predictors of EDS in epilepsy patients. In conclusion, sleep-wake habits and the frequency of most sleep disorders are similar in non-selected epilepsy patients as compared to controls. In epilepsy patients, EDS was predicted by a history of loud snoring and RL-symptoms but not by SA or epilepsy-related variables (including type of epilepsy, frequency of seizures, and number of antiepileptic drugs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project described sleep-wake behaviour in community-dwelling older adults and in community dementia care. It examined the applicability of a newly presented conceptual model (the Multifactorial Influences on Sleep Health model) to evaluate factors influencing sleep in ageing, with a particular focus on the importance of daytime light exposure and the impact of partners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices, we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: (1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, (2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which (3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time), based on the sensor observations obtained until time slot k. Our results show that an optimum closed loop control on Mk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a sensor node with an energy harvesting source. In any slot,the sensor node is in one of two modes: Wake or Sleep. The generated energy is stored in a buffer. The sensor node senses a random field and generates a packet when it is awake. These packets are stored in a queue and transmitted in the wake mode using the energy available in the energy buffer. We obtain energy management policies which minimize a linear combination of the mean queue length and the mean data loss rate. Then, we obtain two easily implementable suboptimal policies and compare their performance to that of the optimal policy. Next, we extend the Throughput Optimal policy developed in our previous work to sensors with two modes. Via this policy, we can increase the through put substantially and stabilize the data queue by allowing the node to sleep in some slots and to drop some generated packets. This policy requires minimal statistical knowledge of the system. We also modify this policy to decrease the switching costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices,we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: 1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, 2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which 3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time),based on the sensor observations obtained until time slot k.Our results show that an optimum closed loop control onMk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim in this paper is to allocate the `sleep time' of the individual sensors in an intrusion detection application so that the energy consumption from the sensors is reduced, while keeping the tracking error to a minimum. We propose two novel reinforcement learning (RL) based algorithms that attempt to minimize a certain long-run average cost objective. Both our algorithms incorporate feature-based representations to handle the curse of dimensionality associated with the underlying partially-observable Markov decision process (POMDP). Further, the feature selection scheme used in our algorithms intelligently manages the energy cost and tracking cost factors, which in turn assists the search for the optimal sleeping policy. We also extend these algorithms to a setting where the intruder's mobility model is not known by incorporating a stochastic iterative scheme for estimating the mobility model. The simulation results on a synthetic 2-d network setting are encouraging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In geographical forwarding of packets in a large wireless sensor network (WSN) with sleep-wake cycling nodes, we are interested in the local decision problem faced by a node that has ``custody'' of a packet and has to choose one among a set of next-hop relay nodes to forward the packet toward the sink. Each relay is associated with a ``reward'' that summarizes the benefit of forwarding the packet through that relay. We seek a solution to this local problem, the idea being that such a solution, if adopted by every node, could provide a reasonable heuristic for the end-to-end forwarding problem. Toward this end, we propose a local relay selection problem consisting of a forwarding node and a collection of relay nodes, with the relays waking up sequentially at random times. At each relay wake-up instant, the forwarder can choose to probe a relay to learn its reward value, based on which the forwarder can then decide whether to stop (and forward its packet to the chosen relay) or to continue to wait for further relays to wake up. The forwarder's objective is to select a relay so as to minimize a combination of waiting delay, reward, and probing cost. The local decision problem can be considered as a variant of the asset selling problem studied in the operations research literature. We formulate the local problem as a Markov decision process (MDP) and characterize the solution in terms of stopping sets and probing sets. We provide results illustrating the structure of the stopping sets, namely, the (lower bound) threshold and the stage independence properties. Regarding the probing sets, we make an interesting conjecture that these sets are characterized by upper bounds. Through simulation experiments, we provide valuable insights into the performance of the optimal local forwarding and its use as an end-to-end forwarding heuristic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previously observations showed that the amplitude of cortical evoked potentials to irrelevant auditory stimulus (probe) recorded from several different cerebral areas was differentially modulated by brain states. At present study, we simultaneously re

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE: Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, evidence has emerged for a bidirectional relationship between sleep and neurological and psychiatric disorders. First, sleep-wake disorders (SWDs) are very common and may be the first/main manifestation of underlying neurological and psychiatric disorders. Secondly, SWDs may represent an independent risk factor for neuropsychiatric morbidities. Thirdly, sleep-wake function (SWF) may influence the course and outcome of neurological and psychiatric disorders. This review summarizes the most important research and clinical findings in the fields of neuropsychiatric sleep and circadian research and medicine, and discusses the promise they bear for the next decade. The findings herein summarize discussions conducted in a workshop with 26 European experts in these fields, and formulate specific future priorities for clinical practice and translational research. More generally, the conclusion emerging from this workshop is the recognition of a tremendous opportunity offered by our knowledge of SWF and SWDs that has unfortunately not yet entered as an important key factor in clinical practice, particularly in Europe. Strengthening pre-graduate and postgraduate teaching, creating academic multidisciplinary sleep-wake centres and simplifying diagnostic approaches of SWDs coupled with targeted treatment strategies yield enormous clinical benefits for these diseases.