974 resultados para Skin Friction
Resumo:
The conventional Clauser-chart method for determination of local skin friction in zero or weak pressure-gradient turbulent boundary layer flows fails entirely in strong pressure-gradient situations. This failure occurs due to the large departure of the mean velocity profile from the universal logarithmic law upon which the conventional Clauser-chart method is based. It is possible to extend this method,even for strong pressure-gradient situations involving equilibrium or near-equilibrium turbulent boundary layers by making use of the so-called non-universal logarithmic laws. These non-universal log laws depend on the local strength of the pressure gradient and may be regarded as perturbations of the universal log law.The present paper shows that the modified Clauser-chart method, so developed, yields quit satisfactory results in terms of estimation of local skin friction in strongly accelerated or retarded equilibrium and near-equilibrium turbulent boundary layers that are not very close to relaminarization or separation.
Resumo:
In this paper, we develop a novel moving mesh method suitable for solving axisymmetric free-boundary problems, including the Marangoni effect induced by surfactant or temperature variation. This method employs a body-fitted grid system where the gas-liquid interface is one line of the grid system. We model the surfactant equation of state with a non-linear Langmuir law, and, for simplicity, we limit ourselves to the situation of an insoluble surfactant. We solve complicated dynamic boundary conditions accurately on the gas-liquid interface in the framework of finite-volume methods. Our method is used to study the effect of a surfactant on the skin friction of a bubble in a uniaxial flow. For the limiting case where the surface diffusivity is zero, the effect of a tangential stress generated by the surface tension gradient, allows us to explain a new phenomenon in high concentration regimes: larger surface tension, but also larger deformation. Furthermore, this condition leads to the formation of boundary layers and flow separation at high Reynolds numbers. The influence of these complex flow patterns is examined. © 2005 Elsevier SAS. All rights reserved.
Resumo:
In this work the turbulent flow of the Non-Newtonian Carreau-Yasuda fluid will be studied. A skin friction equation for the turbulent flow of Carreau-Yasuda fluids will be derived assuming a logarithmic behavior of the turbulent mean velocity for the near wall flow out of the viscous sub layer. An alternative near wall characteristic length scale which takes into account the effects of the relaxation time will be introduced. The characteristic length will be obtained through the analysis of viscous region near the wall. The results compared with experimental data obtained with Tylose (methyl hydroxil cellulose) solutions showing good agreement. The relations between scales integral and dissipative obtained for length, time, velocity, kinetic energy, and vorticity will be derived for this type of fluid. When the power law index approach to unity the relations reduces to Newtonian case.
Resumo:
Supersedes NACA technical note 4231.
Resumo:
Cornell Aeronautical Laboratory, Inc., Buffalo. Report no. AA-1948-Y-3
Resumo:
Shvab-Zeldovich coupling of flow variables has been used to extend Van Driest's theory of turbulent boundary-layer skin friction to include injection and combustion of hydrogen in the boundary layer. The resulting theory is used to make predictions of skin friction and heat transfer that are found to be consistent with experimental and numerical results. Using the theory to extrapolate to larger downstream distances at the same experimental conditions, it is found that the reduction in skin-friction drag with hydrogen mixing and combustion is three times that with mixing alone. In application to flow on a flat plate at mainstream velocities of 2, 4, and 6 knits, and Reynolds numbers from 3 X 10(6) to 1 x 10(8), injection and combustion of hydrogen yielded values of skin-friction drag that were less than one-half of the no-injection skin-friction drag, together with a net reduction in heat transfer when the combustion heat release in air was less than the stagnation enthalpy. The mass efficiency of hydrogen injection, as measured by effective specific impulse values, was approximately 2000 s.