988 resultados para Size ariatin of coal particle
Resumo:
Colorimetric analysis of roadway dust is currently a method for monitoring the incombustible content of mine roadways within Australian underground coal mines. To test the accuracy of this method, and to eliminate errors of judgement introduced by human operators in the analysis procedure, a number of samples were tested using scanning software to determine absolute greyscale values. High variability and unpredictability of results was noted during this testing, indicating that colorimetric testing is sensitive to parameters within the mine that are not currently reproduced in the preparation of reference samples. This was linked to the dependence of colour on particle surface area, and hence also to the size distribution of coal particles within the mine environment. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Information on the spatial distribution of particle size fractions is essential for use planning and management of soils. The aim of this work to was to study the spatial variability of particle size fractions of a Typic Hapludox cultivated with conilon coffee. The soil samples were collected at depths of 0-0.20 and 0.20-0.40 m in the coffee canopy projection, totaling 109 georeferentiated points. At the depth of 0.2-0.4 m the clay fraction showed average value significantly higher, while the sand fraction showed was higher in the depth of 0-0.20 m. The silt showed no significant difference between the two depths. The particle size fractions showed medium and high spatial variability. The levels of total sand and clay have positive and negative correlation, respectively, with the altitude of the sampling points, indicating the influence of landscape configuration.
Resumo:
The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Resumo:
Combustion, Coal, Droplet Combustion, Boudouard Reaction
Resumo:
Particle size distribution (PSD) in the soil profile is strongly related to erosion, deposition, and physical and chemical processes. Water cycling and plant growth are also affected by PSD. Material sedimented upstream of the dam constructions formed large areas of deposited farmland (DF) soils on the Chinese Loess Plateau (CLP), which has been the site of the most severe soil erosion in the world. Two DFs without tillage on the CLP were chosen to study the combined effect of erosion and check dams on PSD. Eighty-eight layers (each 10 cm thick) of filled deposited farmland (FDF) soils and 22 layers of silting deposited farmland (SDF) soils of each studied soil profile were collected and 932 soil samples were investigated using laser granulometry. The particle sizes were stratified in both DFs based on soil properties and erosion resistance. The obtained results of clay and silt fractions showed similar horizontal distribution, indicating parallel characteristics of erosion and deposition processes. Fine sand represented the largest fraction, suggesting the preferential detachment of this fraction. The most erodible range of particle sizes was 0.25-0.5 mm, followed by 0.2-0.25 mm in the studied soil profiles. The correlation between particle size and soil water contents tended to increase with increasing water contents in FDF. Due to the abundant shallow groundwater, the relationship between particle size and soil water content in SDF was lost. Further studies on PSD in the DF area are needed to enhance the conservation management of soil and water resources in this region.
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
The use of pig slurry (PS) as fertilizer can affect the soil quality and increase total stocks of soil organic carbon (TOC). However, the effects of PS on TOC amount and forms in the soil are not fully understood, particularly in areas under no-tillage (NT). The purpose of this study was to determine TOC contents and stocks in the particulate (POC) and mineral-associated C fractions (MAC) of an Oxisol after nine years of maize-oat rotation under NT, with annual applications of PS, soluble fertilizer and combined fertilization (pig slurry + soluble fertilizer). The experiment was initiated in 2001 in Campos Novos, Santa Catarina, with the following treatments: PS at rates of 0 (without fertilization - PS0); 25 (PS25); 50 (PS50); 100 (PS100); and 200 m3 ha-1yr-1 (PS200); fertilization with soluble fertilizer (SF); and mixed fertilization (PS + SF). The TOC content was determined in samples of six soil layers to a depth of 40 cm, and the POC and MAC contents in four layers to a depth of 20 cm. From the rate of 50 m3 ha-1yr-1 and upwards, the soil TOC content and stock increased according to the PS rates in the layers to a depth of 10 cm. The POC and MAC contents and stocks were higher in the surface layers, with a clear predominance of the second fraction, but a greater relative amplitude in the contents of the first fraction.
Resumo:
Raaka-aineen hiukkaskoko on lääkekehityksessä keskeinen materiaaliparametri. Lääkeaineen partikkelikoko vaikuttaa moneen lääketuotteen tärkeään ominaisuuteen, esimerkiksi lääkkeen biologiseen hyväksikäytettävyyteen. Tässä diplomityössä keskityttiin jauhemaisten lääkeaineiden hiukkaskoon määrittämiseen laserdiffraktiomenetelmällä. Menetelmä perustuu siihen, että partikkeleista sironneen valon intensiteetin sirontakulmajakauma on riippuvainen partikkelien kokojakaumasta. Työn kirjallisuusosassa esiteltiin laserdiffraktiomenetelmän teoriaa. PIDS (Polarization Intensity Differential Scattering) tekniikka, jota voidaan käyttää laserdiffraktion yhteydessä, on myös kuvattu kirjallisuusosassa. Muihin menetelmiin perustuvista analyysimenetelmistä tutustuttiin mikroskopiaan sekä aerodynaamisen lentoajan määrittämiseen perustuvaan menetelmään. Kirjallisuusosassa esiteltiin myös partikkelikoon yleisimpiä esitystapoja. Työn kokeellisen osan tarkoituksena oli kehittää ja validoida laserdiffraktioon perustuva partikkelikoon määritysmenetelmä tietylle lääkeaineelle. Menetelmäkehitys tehtiin käyttäen Beckman Coulter LS 13 320 laserdiffraktoria. Laite mahdollistaa PIDS-tekniikan käytön laserdiffraktiotekniikan ohella. Menetelmäkehitys aloitettiin arvioimalla, että kyseinen lääkeaine soveltuu parhaiten määritettäväksi nesteeseen dispergoituna. Liukoisuuden perusteella väliaineeksi valittiin tällä lääkeaineella kyllästetty vesiliuos. Dispergointiaineen sekä ultraäänihauteen käyttö havaittiin tarpeelliseksi dispergoidessa kyseistä lääkeainetta kylläiseen vesiliuokseen. Lopuksi sekoitusnopeus näytteensyöttöyksikössä säädettiin sopivaksi. Validointivaiheessa kehitetyn menetelmän todettiin soveltuvan hyvin kyseiselle lääkeaineelle ja tulosten todettiin olevan oikeellisia sekä toistettavia. Menetelmä ei myöskään ollut herkkä pienille häiriöille.
Resumo:
Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.
Resumo:
The objective of this experiment was to investigate the effects of different particle sizes, expressed as Geometric Mean Diameter (GMD) of corn (0.336mm, 0.585mm, 0.856mm and 1.12mm) of mash and pelleted broiler chicken diets on the weight of the gizzard, duodenum and jejunum+ileum; on the pH of the gizzard and small intestine and on the characteristics of the duodenal mucous layer (number and height of villi and crypt depth) in 42-day-old broilers. The physical form and the particle size of the diet had no significant effect on gizzard and intestine pH (p > 0.05). A greater gizzard weight was seen in the birds receiving pelleted diet and particle size of 0.336mm (p < 0.008). However, for the particle sizes of 0.856 and 1.12 mm, a greater weight was found in birds that received mash diet (p < 0.039 and p < 0.006, respectively). Also, gizzard weight was greater with increasing corn GMD independent of the physical form of the diet. In the mash diet, the increase in particle size promoted a quadratic response in the weight of duodenum and jejunum + ileum. The pelleted diet promoted a greater number of villi per transverse duodenum cut (p < 0.007) and greater crypt depth (p < 0.05). As the particle size increased, there was a linear increase of villus height and crypt depth in the duodenum, irrespective of the physical form of the diet.