970 resultados para Sistemas de combinação de classificadores


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In systems that combine the outputs of classification methods (combination systems), such as ensembles and multi-agent systems, one of the main constraints is that the base components (classifiers or agents) should be diverse among themselves. In other words, there is clearly no accuracy gain in a system that is composed of a set of identical base components. One way of increasing diversity is through the use of feature selection or data distribution methods in combination systems. In this work, an investigation of the impact of using data distribution methods among the components of combination systems will be performed. In this investigation, different methods of data distribution will be used and an analysis of the combination systems, using several different configurations, will be performed. As a result of this analysis, it is aimed to detect which combination systems are more suitable to use feature distribution among the components

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-classifier systems, also known as ensembles, have been widely used to solve several problems, because they, often, present better performance than the individual classifiers that form these systems. But, in order to do so, it s necessary that the base classifiers to be as accurate as diverse among themselves this is also known as diversity/accuracy dilemma. Given its importance, some works have investigate the ensembles behavior in context of this dilemma. However, the majority of them address homogenous ensemble, i.e., ensembles composed only of the same type of classifiers. Thus, motivated by this limitation, this thesis, using genetic algorithms, performs a detailed study on the dilemma diversity/accuracy for heterogeneous ensembles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A presente dissertação apresenta a análise dos classificadores nominais específicos chineses, embasada na Lingüística Cognitiva, tendo como arcabouço teórico a Semântica Cognitiva Experiencialista e a Teoria Prototípica, visando a revelar as motivações semânticas subjacentes e as propriedades de categorização dos classificadores nominais chineses, quando colocados junto a substantivos. Foram analisados todos os classificadores nominais, a partir dos modelos da Semântica Cognitiva Experiencialista, baseados em Lakoff (1987). A amostragem envolveu dados retirados de livros, revistas e internet e da própria experiência vivencial de pesquisadora. Estão descritas as análises de dez classificadores, selecionados pela relevância cultural e potencial de explicitação dos aspectos discutidos. O estudo revela que a combinação de classificadores com substantivos não é arbitrária, como alguns lingüistas chineses acreditam, mas, sim, um reflexo da interação humana com o mundo objetivo, baseada na cognição.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Although some individual techniques of supervised Machine Learning (ML), also known as classifiers, or algorithms of classification, to supply solutions that, most of the time, are considered efficient, have experimental results gotten with the use of large sets of pattern and/or that they have a expressive amount of irrelevant data or incomplete characteristic, that show a decrease in the efficiency of the precision of these techniques. In other words, such techniques can t do an recognition of patterns of an efficient form in complex problems. With the intention to get better performance and efficiency of these ML techniques, were thought about the idea to using some types of LM algorithms work jointly, thus origin to the term Multi-Classifier System (MCS). The MCS s presents, as component, different of LM algorithms, called of base classifiers, and realized a combination of results gotten for these algorithms to reach the final result. So that the MCS has a better performance that the base classifiers, the results gotten for each base classifier must present an certain diversity, in other words, a difference between the results gotten for each classifier that compose the system. It can be said that it does not make signification to have MCS s whose base classifiers have identical answers to the sames patterns. Although the MCS s present better results that the individually systems, has always the search to improve the results gotten for this type of system. Aim at this improvement and a better consistency in the results, as well as a larger diversity of the classifiers of a MCS, comes being recently searched methodologies that present as characteristic the use of weights, or confidence values. These weights can describe the importance that certain classifier supplied when associating with each pattern to a determined class. These weights still are used, in associate with the exits of the classifiers, during the process of recognition (use) of the MCS s. Exist different ways of calculating these weights and can be divided in two categories: the static weights and the dynamic weights. The first category of weights is characterizes for not having the modification of its values during the classification process, different it occurs with the second category, where the values suffers modifications during the classification process. In this work an analysis will be made to verify if the use of the weights, statics as much as dynamics, they can increase the perfomance of the MCS s in comparison with the individually systems. Moreover, will be made an analysis in the diversity gotten for the MCS s, for this mode verify if it has some relation between the use of the weights in the MCS s with different levels of diversity

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work discusses the application of techniques of ensembles in multimodal recognition systems development in revocable biometrics. Biometric systems are the future identification techniques and user access control and a proof of this is the constant increases of such systems in current society. However, there is still much advancement to be developed, mainly with regard to the accuracy, security and processing time of such systems. In the search for developing more efficient techniques, the multimodal systems and the use of revocable biometrics are promising, and can model many of the problems involved in traditional biometric recognition. A multimodal system is characterized by combining different techniques of biometric security and overcome many limitations, how: failures in the extraction or processing the dataset. Among the various possibilities to develop a multimodal system, the use of ensembles is a subject quite promising, motivated by performance and flexibility that they are demonstrating over the years, in its many applications. Givin emphasis in relation to safety, one of the biggest problems found is that the biometrics is permanently related with the user and the fact of cannot be changed if compromised. However, this problem has been solved by techniques known as revocable biometrics, which consists of applying a transformation on the biometric data in order to protect the unique characteristics, making its cancellation and replacement. In order to contribute to this important subject, this work compares the performance of individual classifiers methods, as well as the set of classifiers, in the context of the original data and the biometric space transformed by different functions. Another factor to be highlighted is the use of Genetic Algorithms (GA) in different parts of the systems, seeking to further maximize their eficiency. One of the motivations of this development is to evaluate the gain that maximized ensembles systems by different GA can bring to the data in the transformed space. Another relevant factor is to generate revocable systems even more eficient by combining two or more functions of transformations, demonstrating that is possible to extract information of a similar standard through applying different transformation functions. With all this, it is clear the importance of revocable biometrics, ensembles and GA in the development of more eficient biometric systems, something that is increasingly important in the present day

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O presente estudo teve como objetivo analisar questões sociais e econômicas do cotidiano de quatro comunidades quilombola (Cedro, Pedra Preta, Ribeirão Grande e Terra Seca) residentes da Reserva de Desenvolvimento Sustentável Quilombos de Barra do Turvo (Vale do Ribeira/SP), e levantar o debate acerca da questão da luta pelo reconhecimento da posse da terra frente à saída dos mais jovens da comunidade para as grandes cidades. Através dos dados coletados por meio de levantamento bibliográfico a respeito do tema e entrevistas semiestruturadas com representantes das famílias das quatro comunidades, foi possível discorrer a respeito da problemática da saída dos jovens, que afeta diretamente o futuro dessas comunidades tradicionais, bem como a sugestão de alternativas que visando geração de renda para essas famílias e a inserção e o futuro estabelecimento desses jovens no cotidiano das comunidades. Os resultados deste trabalho mostram que esses quilombolas, bem como seus antepassados, formam comunidades essencialmente rurais e agrícolas, com dinâmica fortemente ligada ao meio natural circundante. Quanto às suas práticas agrícolas, as famílias se dividem em dois grupos: os praticantes da agricultura tradicional, também chamada de “coivara”, e a agroecologia, com Sistemas Agroflorestais bem estabelecidos, onde os agricultores são organizados através de uma cooperativa agroflorestal. Essa divisão agrícola, como mostrado na pesquisa, tem reflexo direto na organização social e econômica das comunidades, bem como no processo de preservação do patrimônio cultural desses grupos. A pesquisa apontou ainda para um grande êxodo dos indivíduos mais jovens das quatro comunidades rumo aos grandes centros urbanos, pela falta de interesse destes na cultural local, ou pela busca por empregos regulares, levantando o questionamento sobre a preservação da cultura e do território quilombola de Barra do Turvo

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estudos multitemporais de dados de sensoriamento remoto dedicam-se ao mapeamento temático de uso da terra em diferentes instâncias de tempo com o objetivo de identificar as mudanças ocorridas em uma região em determinado período. Em sua maioria, os trabalhos de classificação automática supervisionada de imagens de sensoriamento remoto não utilizam um modelo de transformação temporal no processo de classificação. Pesquisas realizadas na última década abriram um importante precedente ao comprovarem que a utilização de um modelo de conhecimento sobre a dinâmica da região (modelo de transformação temporal), baseado em Cadeias de Markov Fuzzy (CMF), possibilita resultados superiores aos produzidos pelos classificadores supervisionados monotemporais. Desta forma, o presente trabalho enfoca um dos aspectos desta abordagem pouco investigados: a combinação de CMF de intervalos de tempo curtos para classificar imagens de períodos longos. A área de estudo utilizada nos experimentos é um remanescente florestal situado no município de Londrina-PR e que abrange todo o limite do Parque Estadual Mata dos Godoy. Como dados de entrada, são utilizadas cinco imagens do satélite Landsat 5 TM com intervalo temporal de cinco anos. De uma forma geral, verificou-se, a partir dos resultados experimentais, que o uso das Cadeias de Markov Fuzzy contribuiu significativamente para a melhoria do desempenho do processo de classificação automática em imagens orbitais multitemporais, quando comparado com uma classificação monotemporal. Ainda, pôde-se observar que as classificações com base em matrizes estimadas para períodos curtos sempre apresentaram resultados superiores aos das classificações com base em matrizes estimadas para períodos longos. Também, que a superioridade da estimação direta frente à extrapolação se reduz com o aumento da distância temporal. Os resultados do presente trabalho poderão servir de motivação para a criação de sistemas automáticos de classificação de imagens multitemporais. O potencial de sua aplicação se justifica pela aceleração do processo de monitoramento do uso e cobertura da terra, considerando a melhoria obtida frente a classificações supervisionadas tradicionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta o desenvolvimento de sistemas inteligentes aplicados ao monitoramento de estruturas aeronáuticas abordando dois modelos distintos: o primeiro é a análise e classificação de imagens de ultrassom de estruturas aeronáuticas com objetivo de apoiar decisões em reparo de estruturas aeronáuticas. Foi definido como escopo do trabalho uma seção transversal da asa da aeronave modelo Boeing 707. Após a remoção de material superficial em áreas comprometidas por corrosão, é realizada a medição da espessura ao longo da área da peça. Com base nestas medições, a Engenharia realiza a análise estrutural, observando os limites determinados pelo manual de manutenção e determina a necessidade ou não de reparo. O segundo modelo compreende o método de impedância eletromecânica. É proposto o desenvolvimento de um sistema de monitoramento de baixo custo aplicado em uma barra de alumínio aeronáutico com 10 posições de fixação de porcas e parafusos. O objetivo do sistema é avaliar, a partir das curvas de impedância extraídas do transdutor PZT fixado na barra, sua capacidade de classificar a existência ou não de um dano na estrutura e, em caso de existência do dano, indicar sua localização e seu grau de severidade. Foram utilizados os seguintes classificadores neste trabalho: máquina de vetor de suporte, redes neurais artificiais e K vizinhos mais próximos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A aplicabilidade de um método selecionado de medição indireta de vitelogenina (Vtg) em plasma sanguíneo de peixe, baseado na quantificação de fosfato álcali-lábil (alkali-labile phosphate-ALP) para acessar estrogenicidade em água, foi investigada na presente tese. O método foi originalmente desenvolvido para a espécie de peixe Carassius carassius (Carpa cruciana) e aplicado pela primeira vez na espécie Oreochromis niloticus (Tilápia do Nilo) no presente estudo. Com o objetivo de acessar a sensibilidade do método, em uma primeira etapa da investigação foram realizados estudos laboratoriais com soluções estoques de 17-ethinylestradiol (EE2), 17-estradiol (E2), e estrona (E1). Os efeitos destes hormônios foram investigados com base tanto na concentração quanto na carga, utilizando-se para tanto, unidades experimentais com volumes distintos (2 L e 130 L). Após a validação do método de ALP, a estrogenicidade foi avaliada nas seguintes águas contaminadas: (i) afluente e efluente de uma grande estação de tratamento de esgotos convencional (ETE) e de uma estação descentralizada de tratamento de esgoto de pequeno porte (Ecossistema Engenheirado-DEE); (ii) água superficial (SW) e água subterrânea (GW) coletadas em uma área de brejo contaminada com gasolina; (iii) água de uma lagoa urbana (LRF) da cidade do Rio de Janeiro, com alta densidade populacional e descarte clandestino de esgoto. Na segunda etapa foram analisados em microalgas os efeitos (outros que não disrupção endócrina) causados pelos hormônios EE2, E2 e E1. Os hormônios foram testados individualmente e em misturas, em culturas individuais e combinada (S+) das espécies de microalgas unicelulares P. subcapitata e D. subspicatus. Com base nos níveis de ALP para a espécie de peixe e no EC50 para as espécies de algas, os resultados mostraram que o EE2 e o E2 causaram disrupção endócrina superior e foram mais tóxicos do que o E1 para peixes e microalgas respectivamente. Quando em misturas (E+) de concentrações equivalentes (EE2:E2:E1), os estrogênios resultaram em efeito aditivo para as espécies O. niloticus e P. subcapitata, e menos que aditivo para D. subspicatus e cultivo misto de algas (S+). Culturas contendo ambas as espécies de algas (S+) por um longo período de exposição (96 h) resultaram na atenuação dos efeitos tóxicos causados pela exposição, tanto individual (EE2, E2 ou E1), quanto na mistura (E+) dos estrogênios, medidos em termos de EC50 (T0h 0,07; 0,09; 0,18; e 0,06 g mL-1; e T96h 1,29; 1,87; 5,58; e 4,61 g mL-1, respectivamente). O DEE apresentou uma maior eficiência na remoção dos disrutores endócrinos do que a ETE convencional. Foi detectada estrogenicidade em amostras da LRF, e de água SW e GW em área brejosa contaminada com gasolina. Os resultados dos ensaios sugerem que as interações (efeitos aditivos ou menos que aditivo) causadas pela mistura dos estrogênios assim como, as interações entre as espécies de algas afetaram o resultado final dos ensaios ecotoxicológicos. Um fator raramente abordado em estudos ecotoxicológicos que foi destacado na presente tese refere-se à importância de considerar não somente a concentração e a dosagem, mas também a carga aplicada e o volume das unidades experimentais. Devido à boa sensibilidade do O. niloticus quando exposto às concentrações relativamente baixas dos estrogênios, a combinação do método de ALP com os biomarcadores auxiliares (particularmente MN) pode ser um protocolo adequado para a detecção de estogenicidade e genotoxicidade respectivamente em diferentes ambiente aquáticos contaminados, como parte de um programa de monitoramento ambiental